
Alan Winfield

A new way to
Program
Microcomputers

SIGMA

Q

THE
COMPLETE
FORTH

A.F.T. Winfield

m

Sigma Technical Press

Copyright © 1983 by A. Winfield

All Rights Reserved.

No part of this book may be reproduced or transmitted by any means without
the prior permission of the publisher. The only exceptions are for the
purposes of review, or as provided for by the Copyright (Photocopying) Act
or in order to enter the programs herein onto a computer for the sole use

of the purchaser of this book.

ISBN 0-905104-22-6

Published by:

SIGMA TECHNICAL PRESS,

5 Alton Road,

Wilmslow,
Cheshire,
U.K.

Distributors:

Europe, Africa:
JOHN WILEY & SONS LIMITED,

Baffins Lane, Chichester,

West Sussex, England.

Australia, New Zealand, South-East Asia:
Jacaranda-Wiley Ltd., Jacaranda Press,
JOHN WILEY & SONS INC.,
GPO. Box 859, Brisbane,
Queensland 40001, Australia

Printed in Great Britain by
J. W. Arrowsmith Ltd, Bristol

Preface
FORTH is an exciting computer language that was first developed in the early
1970's for scientific applications, but not until recently has FORTH become widely
available for microcomputers. Indeed, FORTH has emerged at a time in which
microcomputers have 'come of age' and many users have gone beyond the
tentative exploratory stages - and are programming for serious and demanding
applications.

Most of the existing languages suffer serious limitations; BASIC is too slow for
many applications; yet assembler is not user-friendly, is difficult to learn, and
worse still, is limited to one processor. FORTH overcomes all of these difficulties to
provide a compact and friendly language, with fast execution.

This book is a complete guide to FORTH programming. The first half of the book
introduces the language through examples and frequent comparison with BASIC.
The later chapters delve into some of the more unusual capabilities of FORTH,
many of which have no equivalent in other languages. The FORTH-79 standard
dialect of FORTH is adopted throughout the book, although common departures
from this standard are detailed as footnotes.

The book is intended for anyone who wishes to learn and use FORTH. Some
familiarity with microcomputers and the language BASIC is assumed, but no prior
knowledge of FORTH is required. The book should be equally well serve as a useful
reference of ideas and techniques for practising FORTH programmers.

I would like to acknowledge Charles Moore and Elizabeth Rather - the inventors of
the language, and the FORTH Standards Team - the originators of the FORTH-79
standard dialect used in this book. Grateful thanks are due to Graham Beech of
Sigma Technical Press for suggesting the book, Ian Mitchell and Peter Cain for the
technical proofing of the manuscript, and my better half Mary for putting up with
me during its writing!

Alan Winfield,
Hull.
January, 1983.

FORTH is a registered trademark of FORTH, Inc.

Contents
Introducing FORTH

How is FORTH Different? v' ''
How best to read this book i x
For Handy Reference x i
For Computer Professionals x i

Chapter 1 FORTH Fundamentals

1.1 Speak FORTH I
1.2 The Stack I
1.3 FORTH Arithmetic 2
1.4 Further FORTH Arithmetic 3
1.5 About the Numbers 4
1.6 Some Duplication 6
1.7 More Stack Manipulation 7
1.8 Summary and Exercises 8

Chapter 2 The FORTH WORD

2.1 FORTH in Action I I
2.2 The FORTH Error 12
2.3 The FORTH Variable 13
2.4 A Closer look at VARIABLE 15
2.5 The FORTH CONSTANT 16
2.6 Summary and Exercises 17

Chapter 3 The COLON Definition

3.1 Colon Calculations 21
3.2 More Percentages 22
3.3 Colon Definition or Program? 2 3
3.4 Interpret?.. Compile? 24
3.5 Creating tables and arrays 25
3.6 The Stack Notation Extended 27
3.7 Summary and Exercises 28

Chapter 4 FORTH Structures 1, IF

4.1 True or False? 31
4.2 The IF structure defined 32
4.3 Nested IF structures 33
4.4 Logical Operators for Complex Conditionals 34
4.5 The Missing Comparison operations
4.6 Summary and Exercises 37

Chapter 5 FORTH Structures 2, Loops

5.1 The DO loop 41
5.2 The DO loop in action 42
5.3 Loop Calculations 43
5.4 + LOOP for interesting increments 44

v

5.5 Nested DO loops and other specialities 44
5.6 The UNTIL loop 46
5.7 The WHILE loop 47
5.8 FORTH structures in action 48
5.9 Summary and Exercises 49

Chapter 6 Editing, Saving and Loading FORTH programs

6.1 The FORTH LOADing concept 5 3
6.2 The Editor 55
6.3 More BLOCK handling 58
6.4 Vocabulary Management 60
6.5 Summary 62

Chapter 7 Number and String Input and Output

7.1 Character input-output, the basics 65
7.2 String input-output 1 66
7.3 String input-output 2 68
7.4 Number Bases 70
7.5 Alternative number input 71
7.6 Summary 72

Chapter 8 Double Precision and beyond

8.1 Double Precision Numbers 75
8.2 Mixed Precision 77
8.3 The Return stack for High Speed Definitions 78
8.4 Formatted Number Output 80
8.5 Fixed Point Arithmetic 82
8.6 Summary 84

Chapter 9 Extending FORTH

9.1 Defining new Defining words 87
9.2 The last word on ARRAYS 89
9.3 A STRING variable 90
9.4 Self Modifying Data structures 93
9.5 A Closer Look at the Dictionary 9 4
9.6 Defining new Compiling words 97
9.7 Summary 100

Chapter 10 FORTH Finale

10.1 The Calendar Vocabulary 103
10.1.1 Zeller's Congruence 103
10.1.2 Daynumber and day 105
10.1.3 Month, year and daysleft 10 6
10.1.4 The Calendar Vocabulary blocks listed 107
10.2 A Video Game Vocabulary 109
10.2.1 The Ball handling routines 110
10.2.2 Bat handling I 12
10.2.3 The Squash game 112
10.2.4 The Videogame Vocabulary blocks listed 114

Bibliography 116

VI

117

123

Answers to Problems

Glossary of FORTH Terminology

Index

FORTH Handy Reference Card

VI i

We could even request a calendar for the whole year by typing simply:

1982 year

Having specified our ideal end result we must now write a FORTH program for
each of the functions 'day', 'daysleft', 'month' and 'year'. The 'year' program
would probably look something like this:

: year
12 0 DO (loop for twelve months)

I OVER month (print each month)

LOOP

DROP

/

The program has been placed inside a special FORTH structure called a 'Colon
definition' and given the name 'year'. Providing that FORTH already recognises the
word 'month', all of the above may be typed in, and will be compiled and added
into FORTH, with the name 'year'. The 'year' program has now become a part of
FORTH that may be run at any time by simply typing, for example:

1982 year

What could be easier!

Of course, before typing in 'year', we must already have entered a program for
'month'. Again, this will be in the form of a colon-definition:

: month ... a FORTH program ... ;

This time the program inside the colon definition is likely to be written entirely in
standard FORTH and may be typed directly into a standard FORTH system.

Don't worry if you do not understand the actual syntax of the examples given
above or terms like 'compile'. All of this will be explained during the course of the
book, including more detailed programs for the 'calendar' words above. The
important message of this introduction is that the FORTH programmer builds a
special 'vocabulary' of functions, (a calendar vocabulary in the example above).
Simply typing one of the words in the vocabulary will cause the corresponding
program to be run. The finished vocabulary may then be stored on disk or cassette.

For the hobbyist and professional alike this is an interesting and refreshing
alternative approach to programming. For the computer professional I will say
more at the end of this introduction, but now a few words about this book.

How best to read this book
Like any new programming language FORTH must be learned from the ground
floor up. There may be quite a few floors in the FORTH building, but the effort is
exceedingly worthwhile, as I hope I showed earlier in this introduction!
Nevertheless, FORTH is an interactive language, meaning that programs may be
developed and tested 'at the keyboard', or, what is more useful at this stage,
FORTH may be learned 'at the keyboard' as well. This means that as each new
facility is explored we may actually try out the facility on a microcomputer running
FORTH, and that is true right from the very beginning!

This book is an ideal accompaniment to a brand new FORTH system running on

your microcomputer, but don't worry if you do not have a microcomputer to hand,
the examples will make sense anyway. Virtually all of the FORTH which appears
throughout the text may be typed in, and accepted by most of the standard FORTH
systems currently available. If your system conforms to the FORTH-79 standard
(produced by the FORTH Standards Team), then all of the examples will run
without modification. If not, you may have to consult the documentation for your
system, to identify any differences.

In all of the examples which are suitable for trying out on a FORTH system I have
indicated the response from FORTH in italics. The part which you actually type in
is not italicised. Apart from this, there are only two additional points to be
remembered when talking to a FORTH system. These are:

i) FORTH doesn't start to execute any of your typed input until after you hit
'return'. This is a single key on the far right hand side of the keyboard,
normally labelled 'return', or sometimes 'newline'.
This is called 'buffered' input, and has the great advantage that if you make a
typing error you are able to correct it by using the 'backspace' key.

ii) FORTH likes each number, or symbol in the input to be separated by at least
one space.
The reason for this will be explained later.

Rather than state these conventions each time an example occurs, we will just
assume them, so that for example:

I AM FORTH " I AH FORTH ok

means that you typed i am forth" and then hit 'return', and FORTH responded
by printing I ah forth ok. The final 'ok' is FORTH's way of saying "I've finished
processing that line of input and I am ready for the next".

Chapters one to five inclusive form a self contained introductory course in FORTH
programming which requires only a basic familiarity with computer concepts and
terminology. For readers familiar with BASIC, examples of FORTH and BASIC are
given side by side where appropriate (and possible!). Also a short set of exercises is
included at the end of each chapter, with full solutions at the end of the book.

Chapter six covers the FORTH editing and disk (or cassette) handling operations.
FORTH editors differ considerably from system to system and so this chapter
presents only a typical set of editing operations.

Chapters seven, eight and nine present a selection of some of the more exotic and
sometimes obscure techniques of FORTH programming. The chapters are not
essential reading for the absolute beginner to FORTH but are intended more as
reference material for the practising FORTH programmer, who will, it is hoped,
delve into these chapters for hints or ideas to incorporate into his own programs.
The newcomer to FORTH is, nevertheless, recommended to1 skim through these
chapters, to whet the appetite and to become aware of some of the more unusual
capabilities of FORTH, many of which have no parallel in most other computer
languages.

Finally, chapter ten presents two major FORTH programs which are both
interesting programs in themselves and provide examples of how a FORTH
programmer approaches the design of large programs.

x

For Handy Reference
Included in this book is a tear-out FORTH handy reference card, which gives very

brief details of all of the words and symbols which FORTH recognises. In FORTH

terminology this is called the 'Dictionary'. If you have a FORTH system on your

micro-computer, it is unlikely that the dictionary is identical to the one in the handy

reference, but they will probably be very similar. The notation used in the handy

reference for summarising the action of each FORTH word, or symbol, may be

confusing at first, but will be explained in some detail in chapter one. As soon as

you start writing your own FORTH programs, which should be very shortly, you

will find this handy reference invaluable. It is recommended that you should refer

to this, when trying out examples as soon as possible after chapter one. Likewise, if

any of the terminology needs clarification a glossary of FORTH terminology is

included at the end of the book - which may be easier to use than digging up the

appropriate section in the text.

The remainder of this chapter is a summary of FORTH, for computer professionals.

If you don't speak 'computerese' then you can easily skip this section and go

straight into chapter one!

For Computer Professionals
By any standards FORTH is a most unusual computer language. Certainly FORTH

has little in common with mainstream languages such as BASIC or Pascal.

Nevertheless, FORTH is a high-level language; it embodies structured program¬

ming concepts, and FORTH programs are both modular and portable. At the same

time, the FORTH programmer has access to primitive operations, or symbolic

assembler if needed - so in some respects FORTH may be likened to a

macro-assembler.

A FORTH system is both an interpreter and compiler. Normally, all input to

FORTH (which may come from either the keyboard, or backing storage), is

interpreted and executed directly. However, if the same input is enclosed inside a

colon-definition (as illustrated earlier in this introduction), then it is compiled into a

compact threaded code. Thus, FORTH has the unusual feature of providing an

interactive interpeter like environment for testing and debugging programs, which

is friendly and easy to use, but at the same time the final programs are truly

compiled and therefore fast and efficient. Runtime speeds comparable to compiled

Pascal, or better than ten times faster than interpreted BASIC, can easily be

achieved in FORTH.

Another feature of FORTH which results in short development and debugging

times is the unusual nature of programming by extending the language. All FORTH

operations (which may be likened to the 'reserved' words of BASIC - 'LET',

'PRINT', '+', '-' etc.), are contained in a dictionary. Programming proceeds by

defining new words using the existing set and adding these new words to the

dictionary using the special 'colon-definition' construct. These new words are in

turn used to develop still more complex operations and in this way the FORTH

programmer builds a special 'vocabulary', which is tailored to his problem. Each

new operation is fully tested at the keyboard before proceeding to the next - and in

this way bugs are caught and cured early!

xi

Most complete FORTH systems will already have a number of special purpose,
'vocabularies' built in, editor, assembler, and disk handling vocabularies are
examples. This means that a FORTH system is normally completely self-sufficient -
no other development software is needed whatever. Furthermore, the whole
system is fairly compact, typically under 16k bytes. This is of particular advantage
to the software engineer, since he can often use the target computer system as the
development system as well.

In case the above description has made FORTH sound like the answer to every
programmer's dream (!), let me describe briefly some of the features which some
programmers may find less attractive...

The first is the use of a stack, and as a result. Reverse Polish notation. To a large
extent these features are a part of the fundamental structure of FORTH and
certainly contribute to the speed and compactness of FORTH. The stack also results
in some very neat ways of passing parameters into programs. As an example, in the
'calendar' operations outlined early in this chapter - to print out a whole year
calendar the user simply types, say:

1982 year

When FORTH interprets this line of input it 'pushes' the number 1982 onto the
stack (as it does for any numbers in an interpreted input stream). The program
'year' then 'pops' the number off the top of the stack, and uses that as its
parameter.

The second, possibly controversial, feature is the use of integer arithmetic. The
FORTH philosophy here is that integer arithmetic is much faster than floating¬
point, and the majority of applications only need integers anyway. For those
applications where decimal arithmetic must be used, FORTH provides a set of
operations with double-precision (32 bit) integers (±2,147,483,648), which may be
used to implement fixed-point arithmetic.

To conclude this introduction, it is worth remarking that FORTH is not an easy
language to master. Surprisingly, FORTH is easiest for absolute beginners to
computing! For readers like myself, who were raised on algebraic languages such as
Pascal and BASIC - learning FORTH means learning a completely new and
fascinating approach to programming.

x 11

1

FORTH
Fundamentals

At its very simplest a FORTH system may be used
like a calculator, to evaluate arithmetic expressions and directly print out the
results. Although this seems a humble beginning, it does demonstrate the unusual
way in which FORTH uses a 'stack', and as a direct consequence, 'Reverse Polish'
notation. This chapter introduces and explains these two concepts, and develops a
notation for describing the stack which will be used throughout the rest of the
book.

1.1 Speak FORTH
Imagine being seated in front of a computer which speaks FORTH, and suppose,
for example, that you would like some help in multiplying the two numbers 23 and
34. In FORTH you would type:

23 34 * .

to which FORTH will agreeably respond,

782 ok

It is clear, therefore, that we have achieved the same result as typing PRINT 23*34 in
BASIC. You will have noticed, however, the peculiar position of the {*>
multiplication symbol in the FORTH version of this operation, namely, after the
two numbers which are to be multiplied, rather than between them as is the normal
convention. Additionally, what is the significance of the full stop {.} symbol in the
FORTH input?

The answer to these questions lies in the realisation that FORTH uses a 'Stack' for
arithmetic.

1.2 The Stack
Let's try a simpler example than the one above, just type a single number:

27

FORTH will respond with the reply 'ok', on the same line:

27 ok

and nothing appears to have happened (except that FORTH seems to think it's
'ok'!). But actually something rather crucial has happened, namely, the number '27'
has been 'PUSHed' onto the stack. The symbol full stop t. >, which we encountered
before has exactly the opposite effect - it 'POPs' the number off the top of the stack,
and prints it out:

and FORTH will print:

27 ok

I

So, the stack had the effect of remembering a number for us as if we had jotted it
down on a notepad.

Let me explain the STACK, and the operations of PUSH and POP in a little more
detail. If you are already familiar with the operation of a stack you can easily skip
through to the next section.

A stack is simply a special type of storage buffer for numbers, in which numbers are
'pushed' onto the stack, for storage, and later retrieved by 'popping' back off the
stack. The last number to be pushed onto the stack will be the very first to be
popped back off it, and so the stack is often called a Last-in First-out or LIFO store.

27 32 27

27

(a) (b) (c) (d)

Figure 1.1 The Spring Loaded Stack

A good way of picturing a stack is like a spring loaded plate store, of the type often
used by cafeterias. An empty stack will look like (a) in figure 1.1. Push 27 onto the
stack and it will appear like (b). You can see that there's plenty of room still left in
the stack, so we could push another number onto the stack, as in (c). Pop the
number off the stack in (c), and the number 32 is retrieved, and the stack reverts to
(d), exactly as it was in (b).

1.3 FORTH Arithmetic
Let me now examine, in more detail, the multiplication example used in the
previous section by illustrating the contents of the stack before and after each
number and symbol in the FORTH expression:

23 34 * .

input: 23 34 *

stack: empty 23 34 782 empty

23

Figure 1.2

Reading figure 1.2 from left to right, we can see that FORTH simply pushes
numbers onto the stack whenever they occur in the input. Thus, by the time we
reach the symbol {*>, the stack already has the two numbers 23 and 34 on it.
FORTH responds to {*> by popping the top two numbers off the stack, multiplying
them, and then pushing the result back onto the stack. The stack after the {*> just
has the result 782 on it. The final symbol {. >, as explained already, simply pops the
result off the stack and prints it.

So, we are now in a position to write down the first rule of programming in
FORTH; it is:

2

All FORTH arithmetic is executed on a stack.

Let me go a stage further, and say that all arithmetic operations work on the
numbers on the stack, and place their results back onto the stack. This now explains
the peculiar order of:

23 34 * .

instead of the usual print 23*34.

1.4 Further FORTH Arithmetic
A question you may well be asking yourself, at this stage, is "Doesn't this mean
that if I want to do complicated arithmetic in FORTH, I will have to change around
the expression first in order to make it work on the stack?". The simple answer to
this question is "yes", you do have to alter the expression before entering it into
FORTH, but that process is very easily learned. Let's take as a simple example, the
expression:

(1 * 2) + (3 * 4)

and consider how to evaluate this expression mentally. We say "Oh, that's simple,
it's the sum of 1 multiplied by 2 (=2) and 3 multiplied by 4 (=12). So the answer is 2
+ 12 which equals 14".

What we really did then was calculate 1*2, and save the result for later, then
calculate 3*4, and finally add the two results together. Let's write that down, in
FORTH:

1 2 * 3 4 * +

Figure 1.3 shows exactly how FORTH executes this, to produce the correct result of
14.

input: 1 2 * 3 4 * +

stack: empty 1 2 2 3 4 12 14

1 ~1 3 2

2

Figure 1.3

Notice the clever way in which FORTH saves the result of the first multiplication,
on the bottom of the stack, until the second multiplication is complete and the
addition can take place.

Ordinary arithmetic notation is often called 'infix' because the operators (+,-,*,/
etc.) are fixed in-between the numbers. FORTH arithmetic is called 'postfix', or,
more commonly, 'Reverse Polish', after the Polish logician who invented the
notation. In reverse Polish each arithmetic operator comes after the numbers upon
which it operates (termed 'operands'). Converting from ordinary arithmetic
notation to reverse Polish is simply a matter of looking at the expression and
deciding how you would evaluate it on paper. Once you've decided the order in
which to evaluate the individual operations, it is highly likely that FORTH will also
best evaluate them in the same order. Notice that the operands in a reverse Polish
expression remain in the same order in which they occur in the equivalent 'infix'
expression; only the operators change position. Finally, you should try the

3

expression with a picture of the stack, to make sure that FORTH will really get it
right.

All of this talk of infix, and Reverse Polish may, by now, have you wondering
"Why have I bothered with FORTH at all, since most other computer languages like
BASIC and Pascal understand ordinary arithmetic anyway". This is certainly a fair
criticism and is best answered by considering that reverse Polish arithmetic is very
easy to execute and FORTH arithmetic is, as a result, very fast, certainly much
faster than BASIC arithmetic. The stack in FORTH is, however, used for far more
than just the execution of arithmetic. In fact, almost all FORTH operations use the
stack to 'pass parameters' (that is, get input values, and deposit output results).
The use of Reverse Polish in arithmetic follows naturally from the fact that FORTH
is a stack-orientated language.

1.5 About the Numbers
In all of the examples so far the numbers have been whole numbers or, to use the
correct term, integers. The reason for this is that FORTH arithmetic works on
integers only. In FORTH we cannot have numbers like 3.14 E -2 (which is the same
as 0.0314), properly termed 'floating-point' numbers.

This is not such a dreadful limitation as it might at first appear, because FORTH will
allow us to handle 'fixed-point' decimal numbers - like 100.23 or 1.234 - using a set
of double-precision arithmetic operations which will be explained in detail in
chapter 8.

But for the moment let us confine ourselves to integers. FORTH will handle
negative, as well as positive, integers in the range:

-32,768 to +32,767

so that -9999, -1, 0, or 10000 are all examples of valid FORTH numbers. In FORTH
terminology, values in this range are 'signed single precision numbers', and are
represented on the stack as 16 bit binary (beginners should look up the entry on
two's complement arithmetic in the glossary of FORTH terminology for a more
detailed description).

Alternatively, FORTH will allow us to enter 'unsigned single precision numbers' in
the range:

0 to 65,535

This is useful if we should require an extended positive range, but do not require a
negative range. Notice that {.> will not print the correct value for unsigned
numbers greater than 32767:

50000 . —15536 ok (wrong !!)

Instead we must use the 'unsigned' number print operation {U.}:

50000 U. 50000 ok

Most FORTH arithmetic operations will work for unsigned numbers providing that
the result of the operation is within the unsigned number range, for example:

50000 67 + U. 50067 ok (50000 + 67)

40000 1 - U. 39999 ok (40000 - 1)

20001 3 * U. 60003 ok (20001 * 3)

4

But care should be exercised here!

Throughout this book we shall employ the FORTH convention that the term
'number' implies 'signed single precision number'. Whenever we are referring to
unsigned numbers this will be explicitly stated.

The use of integers means that division in FORTH will sometimes give an answer
which is not quite correct. For example, dividing 11 by 3:

11 3 / . 3 ok

gives the answer 3, whereas the true answer is 3 with a remainder of 2. To get
round this there is a FORTH operation {/mod}; a special form of division which
leaves the remainder on the stack as well as the actual result (quotient). So if we
POP and print both of the results from the stack after a {/MOD}, as in:

11 3 /MOD . . 3 2 ok

then we get the complete answer e.g. 3 remainder 2. Figure 1.4 shows the stack as
this example is executed.

i nput:

stack:

11 3 /MOD

3 (quotient)

2 (remainder)

Figure 1.4 The {/mod} operation

If we require only the remainder from a division, the FORTH operation {MOD}

should be used:

11 3 MOD . 2 ok (calculate remainder only)

Two more unusual arithmetic operations are {MAX} and {MiN}. Both need two values
on the stack, and leave a single value; {MAX} leaves the largest of the two values,
and {MIN} the smallest. For example:

10 20 MAX . 20 ok

-5 5 MIN . -5 ok

{MAX} and {MIN} both take note of the 'sign' of the two values, using the normal
convention that negative numbers are 'less than' positive numbers.

Finally, FORTH has two 'sign' changing operations, {ABS} and {NEGATE}. {ABS} has
the effect of making the number on top of the stack positive whatever its sign, for

example:

100 ABS . 100 ok

-2 ABS . 2 ok

Numbers that are already positive are not affected by {ABS}. {negate} has the effect
of always reversing the sign:

100 NEGATE . -100 ok

-2 NEGATE . 2 ok

5

1.6 Some Duplication

Suppose that we wish to add up a set of 4 numbers, but instead of producing a
single result, print out a cumulative result at each stage in the calculation. So that
for example, adding 1 plus 2 plus 3 plus 4 will print out:

3

6
10

where 3 is the result of 1+2, 6 is the result of 1+2+3, and 10 is the result of
1+2+3+4.

The FORTH version of the calculation could be as in figure 1.5.

i nput: 1 2 + 3 + 4 +

nHHFHRHFll
Figure 1.5

If we try typing the input in figure 1.5 it will indeed produce the final result of 10,
but will not print out any of the required intermediate results. Looking at the
picture of the stack contents in figure 1.5, we see that the intermediate results do, in
fact, appear on the stack during the calculation, at the positions indicated by +.
What we require is a method of printing out these intermediate values without
actually removing them from the stack, and the FORTH word {dup> will help.

{DUPJ is not an arithmetic operation, it is one of a special set of FORTH operations
called 'Stack Manipulations'. fDUPJ has the effect, when executed, of Duplicating
the number on the top of the stack, so that, for example:

5 OUP

will result in the number 5 as the first and second items on the stack as in figure 1.6.

input: 5 DUP

1 - IU- 5

1 ll 5

Figure 1.6

Let me, at this stage, introduce a new shorthand notation for picturing the stack
before and after the execution of a FORTH operation:

input: DUP

stack action: (n -* n n)

The 'stack action' is in the format:

(stack before -> stack after)

Either side of the arrow (—>) is a list of the stack contents, the rightmost element in
the 'stack before' list is the item on top of the stack before the operation is executed,
and the rightmost element in the 'stack after' list is the item on top of the stack after
the operation. If this does not seem too clear, it will after a few more examples!

However, to get back to our problem, it should now be evident that to print the
number on top of the stack without actually losing it we use the FORTH:

6

DUP .

If there is only one number on the stack, then in our new stack notation C. > can be

pictured as:

(n —*) and print n

If there happen to be two numbers on the stack, {. > will print the top number and
leave the second number on top of the stack:

(n2 nl —» n2) and print nl

The combined effect of {dup> and {.} is, therefore, to leave the stack unchanged,
however many numbers it contains, but also print a duplicate of the number on top
of the stack.

DUP

(n -* n n -» n) and print n

We can now rewrite the solution to our cumulative sum as:

1 2 + DUP . CR 3 + DUP . CR A + .

And this will print exactly the result required -

3

6
10 ok

Notice that I've also included the FORTH operation TCR> which prints a
carriage-return line-feed on the terminal and therefore puts each result on a
separate line. CCR} does not affect the stack at all:

CR

(->)

1.7 More Stack Manipulation
Most of the stack manipulation operations are designed to overcome one of the
main limitations of a stack, which is that the order of the numbers on a stack is
always the reverse order in which the numbers were pushed onto the stack.
Normally this means that we can only ever pop numbers in a last-in first-out
fashion, for example:

100 200 300 ok

... 300 200 100 ok

prints the numbers in reverse order. The FORTH stack manipulation operations
overcome this limitation. For example, the duplication words {dup>, COVER} and
{PICK} allow us to pick out any number from within the stack and push a new copy
of it onto the top of the stack. So in:

100 200 300 ok

3 PICK . 100 ok

the operations C3 pick .} have picked out and printed the third item on the stack,
without changing the stack in any way. Figure 1.7 shows the effect of C3 pick} on
the stack, cover} picks out the second item on the stack, and pushes a duplicate of it
onto the stack, cover} is therefore the same as C2 pick}.

7

input: 3 PICK

stack: 300 > 100

200 300

100 200

100

Figure 1.7 The operation {pick}

The stack re-ordering words {swap}, {rot} and {roll} allow us to change around
the order of the numbers on the stack. For example in:

100 200 300 ok

SWAP ROT ok

... 100 200 300 ok

the operations {SWAP ROT} have completely reversed the order of the three numbers
on the stack. Figure 1.8 shows the stack during the phrase {swap rot}.

input: SWAP ROT

stack: 300

200
100

Figure 1.8 {swap rot}

{ROLL} is the more general form of stack re-ordering operation, {n roll} will have
the effect of rotating the nth item on the stack up to the top of the stack. {2 roll} is
thus the same as {swap}, and {3 roll} the same as {rot}.

Finally, the operation {DROP} is worth mentioning. {DROP} has the effect of simply
losing the number off the top of the stack - like {.} but without actually printing it.

1.8 Summary and Exercises

Here is a summary of the FORTH operations covered in this chapter, followed by a
set of practice problems in the use of these operations. Suggested solutions are
given at the end of the book.

In the stack descriptions of the following operations 'n' indicates a single precision
number, and 'un' an unsigned single precision number. Also note that nl, n2 etc.
does not indicate the order of numbers on the stack. Top of stack is always on the
right of each of the stack-before and stack-after lists.

The recommended pronunciation is given, on the right hand side of the page, in
"quotes", for those words whose pronunciation may not be obvious. For example
{dup} is pronounced "dupe".

Stack Manipulation:

DUP (n -» n n) "dupe"

Duplicate the number on top of the stack.

DROP (n ->)

Discard the top number from the stack.

8

SWAP C n 1 n2 n2 n 1)

Exchange the top two stack numbers.

OVER (n1 n2 —* nl n2 nl)

Duplicate the second number on the stack.

ROT (nl n2 n3 -» n2 n3 nl) "rote"

Rotate the top three numbers bringing the third to the top.

PICK (nl -> n2)

Duplicate the nl'th number down on the stack, nl must be greater than zero.

ROLL ' (n -»)

Rotate the n'th item (not counting n itself) up to the top of the stack, n must
be greater than 1.

Arithmetic:

+ (nl n2 -> sum) "plus"

Add nl and n2 leaving the sum.

- (nl n2 -» di f f) "mi nus"

Subtract n2 from nl leaving the difference.

* (nl n2 prod) "times"

Multiply nl and n2 leaving the product.

/ (nl n2 -> quot) "divide"

Divide nl by n2 leaving the quotient which is rounded toward zero.

MOO (nl n2 -> rein) "mod"

Divide nl by n2 leaving the remainder with the same sign as nl.

/MOD (nl n2 rem quot) "divide-mod"

Divide nl by n2 and leave the remainder and quotient. The remainder has the
same sign as nl.

MAX (nl n2 -> max) "max"

Leave the greater of the two numbers nl and n2.

MIN (n1 n2 —> min) "min"

Leave the lesser of the two numbers nl and n2.

ABS (n -> |n|) "abs"

Leave the absolute value of n (reverse the sign of n if it is negative, otherwise
leave it unaltered).

NEGATE (n -n)

Reverse the sign of n. (Two's complement.)

9

Output printing:

(n ->) "dot"

Print n (in current base - see chapter 7.4) as a signed single precision number
with one trailing space.

U. (un -») "u-dot"

Print n (in current base) as an unsigned single precision number with one
trailing space.

CR (-») "c-r"

Print a carriage-return and line-feed.

Exercises

1) Write the following arithmetic expressions in FORTH:

(1 + 2) * (3 - 4) / % + t C —'

10 + 100/9 + 5

2 * (3 * (4 * (5 + 6)))

2) Convert the following FORTH expressions back into 'infix':

20 10 + 20 10 - /

1 2 3 4 + + +

20 1 2 * -

3) Show how the stack will be affected by the following operations, assuming in
each case that the stack is initially empty:

100 -200 ABS MAX

-10000 0 MIN NEGATE

1 2 SWAP OVER

10 0UP DUP * *

10 20 30 40 3 PICK +

4) How would you calculate the sum, difference, product and quotient of two
numbers, without having to re-enter the two numbers for each separate
calculation? (Hint - you must use the stack duplication words).

10

2

The FORTH WORD

It may seem unusual to ask the question "What does
FORTH actually do when it executes a line of input?" so early in this book, but
FORTH is an unusual language and the answer to this question is not complex, but
it will increase our understanding considerably and make programming in FORTH
that much easier. This chapter describes a simple model of a FORTH system as it
executes a line of input. At the same time, some useful terminology is introduced;
terminology that will be used often throughout the rest of the book. Knowing how
FORTH works enables us to predict some of the things that can go wrong and so
the chapter continues by introducing FORTH error handling. Finally, we extend
our vocabulary to include variables, constants and arrays and thereby introduce the
important concept of the 'defining word'.

2.1 FORTH in Action
All of the FORTH operations which we have discovered so far (the ones I've
enclosed in {cur ly brackets}) are called, in FORTH terminology, WORDs. Even the
single character symbols like {*} or {.} are FORTH words. Each word is contained
in the FORTH dictionary so that when FORTH interprets a line of input each
word in the input stream is looked-up in the dictionary. Figure 2.1 describes two of
the entries in the dictionary, {*> and {.}.

Word Definition..

* (n 1 n2 -> prod) Multiply nl by n2

. (n —») Print n

Figure 2.1 Two DICTIONARY entries

Just like an ordinary dictionary, the FORTH dictionary contains words, and for
each word a definition. The definition specifies the ACTION of the word when
executed. Figure 2.1 shows the definition both as a verbal description, and more
precisely using the (stack before —» stack after) notation proposed in chapter 1.6.
The FORTH Handy Reference (at the end of the book) shows the FORTH-79
standard dictionary, which contains about 130 words, in the same format.

Let us imagine that the dictionary contained only the two words {*} and {.}, and
examine in more detail how FORTH interprets our simple multiplication example:

23 34 * . 782 ok

FORTH will go through (very quickly) the following steps after we press return:

i) FORTH finds the first word in the input stream, which is {23J, and searches
the dictionary for a match. {23} is not in the dictionary so FORTH assumes
instead that it is a number. Indeed {23} is a valid decimal number, so it is
converted into binary and pushed onto the stack.

ii) Likewise, the second word in the input stream, {34} is not found in the
dictionary, so again it is assumed to be a number and pushed onto the stack.

I I

iii) The third word in the input stream {*} is found in the dictionary so the word
is executed causing the two numbers on top of the stack to be multiplied, and
the result pushed back onto the stack, as defined by the dictionary definition
of {*}.

iv) The fourth word is {.}, again this word is successfully found in the dictionary
and executed, causing the number on top of the stack to be printed.

v) There is no more input left, so FORTH prints the message 'ok' and waits for
another line of input.

We can now write the second rule of programming in FORTH:

All input to FORTH consists of a sequence of words. Each word must be
either in the dictionary, in which case it is executed, or a valid number, in
which case it is pushed onto the stack.

2.2 The FORTH Error
The above description of FORTH in action begs the question - "What happens if
you type a word which is not in the dictionary, and not a number either?". Well, if
we type something like:

PQRXYZ PQRXYZ ?

FORTH simply replies with the message 'PQRXYZ ?' which means, predictably,
that {PQRXYZ} is not in the dictionary, and it's not a number either! The FORTH
error message'?' is similar to the BASIC 'Syntax error' message, except that FORTH
helpfully prints out the word in the input which it doesn't understand. This is
useful if you have a long input line with an error in the middle, for example:

1 !2 * 3 4 * + !2 ?

An additional rule of FORTH is that each word in the input must be separated by at
least one space. It is doubly important that this is observed, since confusing errors
can occur if it is not; for example, missing the space between a number and a valid
FORTH word, or between two FORTH words:

23 34* . 34* ?

FORTH treats {34*} as one word, and cannot find it in the dictionary or interpret it
as a number, so we get the syntax error message '?'.

Missing the space between two numbers is even worse:

2334 * . 0 STACK EMPTY

FORTH reads the first word as {2334}, and pushes the number two thousand three
hundred and thirty four onto the stack. But when FORTH comes to execute the
multiplication {*}, which needs two numbers on the stack, there is only one and so
FORTH prints the error message 'STACK EMPTY'. Of course, if the stack had any
numbers left over from previous operations still on it, then {*} would probably use
one of these for the missing operand and produce a confusing result. For this
reason it is a good idea to clear the stack down from time to time by simply typing
{.} a few times until you get the message STACK EMPTY.

Notice also from the above example that a spurious zero has been printed before

12

the error message. This is because {.} has actually printed a number from off the

end of the stack, which is usually a zero.

The error condition STACK EMPTY is one of the most common error conditions in
FORTH, and because it is peculiar to the use of the stack, there is no equivalent to
STACK EMPTY in BASIC. STACK EMPTY occurs whenever there are less numbers
on the stack than a FORTH operation needs in order to execute correctly. Almost all
operations need input arguments or parameters and could potentially cause the
error condition STACK EMPTY. The stack notation (stack before * stack after),
defined in chapter 1.6, tells us exactly how many arguments an operation needs.

For example:

{.1 (n -»)

needs one argument,

{*> (nl n2 -> prod)

needs two arguments, and

{ROT} (nl n2 n3 —» n2 n3 nl)

needs three arguments. Later in the book 1 will describe a technique for keeping a
note of the contents of the stack whilst writing a FORTH program - and thereby
minimising the likelihood of STACK EMPTY.

2.3 The FORTH Variable
Chapter 1 introduced the stack, and described how all FORTH arithmetic is
performed on the stack. In addition, we saw how temporary results may be saved
on the stack for later use, or how, using the stack manipulation words, a result may
be used by more than one FORTH operation. The stack may be thought of as a
useful short-term memory, or as a scratchpad for doing rough work in, but is
clearly not suitable for long-term storage of numbers. Instead we must use the

variable.

The BASIC programmer is familiar with the use of variables, since in BASIC almost
all arithmetic is performed between variables. The BASIC statement:

LET A1 = 100

simply sets the variable 'AY to the value 100. The equivalent FORTH statement is:

100 A1 !

but if you were to type this, FORTH would reply with the error message 'A1 ?', the
reason being that in FORTH we must define the variable first, using the word

{VARIABLE}:

VARIABLE A1 ok

This has the special effect of reserving a memory location labelled ‘AY. BASIC has
no equivalent to this since, in BASIC, variables are implicitly pre-defined. In
FORTH this is not so and a variable must be declared, or 'defined', before it may be
used. In case this is not too clear, imagine that you are writing a BASIC program
and need a new variable which you decide to call T. You would simply write 'LET
1= ...'. In FORTH you must define the variable before you can assign a value to it or
use it in further operations, by typing:

13

VARIABLE <name>

to create a variable named <name>.1It is worth noting that there are no restrictions on
the number of characters in <name>, or the characters themselves. Some FORTH

systems place the whole variable name into the new dictionary entry, but others
save only the first three or four characters, in which case you must ensure that
these are unique (the documentation for your particular system will tell you more
about this). Either way we can use meaningful variable names like:

VARIABLE Year ok

The FORTH input:

1982 Year ! ok

sets 'Year' to the value '1982'. Here {1982} is pushed onto the stack, {Year} gives the
name of the variable, and {!} stores the number on top of the stack into the
variable.

In the FORTH input:

Year a . 1982 ok

the word {a} has the converse effect of fetching the value of the variable {Year}, and
pushing it onto the stack. {.} then prints it out, so we have the FORTH equivalent
of the BASIC 'PRINT Year' (which some BASIC's would not allow!). The phrase {a
.} is used so often that FORTH has a special operation {?} with exactly the same
effect, so that we could simply type:

Year ? 1982 ok

to print the value of the variable.

The words {!} and {a} are called "store" and "fetch" respectively, and may be used
together to perform arithmetic on variables, for example:

A1 a 1 + A1 ! ok

is directly equivalent to the BASIC, 'LET A1=A1 + 1'. This FORTH example does
not seem quite so peculiar if you consider that the two words {A 1 a} fetch the value
of A1 onto the stack, and the two words {A 1 !} store the value on top of the stack in
Al. The whole line simply breaks down into the three operations:

i) Fetch the value of Al onto the stack.

ii) Add one, using FORTH stack arithmetic.

iii) Store the value on the stack, back into Al.

We may write any calculation involving variables in FORTH. Figure 2.2 illustrates
how the BASIC 'LET A=2*X + Y' would be written, in FORTH, assuming that A,X
and Y have been pre-defined.

'Some FORTH systems require an initial value to be supplied when the variable
is defined, so that:

n VARIABLE <name>

defines a variable named <na»e> with initial value n.

14

BASIC: LET A = 2 * X + Y

FORTH: 2XB*Ya + A!

Figure 2.2 FORTH Variable Arithmetic

It is certainly fair comment to say that FORTH variable arithmetic is somewhat
peculiar, but it is also true that variables are used far less often in FORTH than in
other languages. The reason for this will become clear later.

Now, however, a few more words about {variable}.

2.4 A Closer look at {variable}
The reason that I have spent some time looking at variables in a chapter which
started by talking about the FORTH dictionary is that {variable} is one of a special
set of words called defining words.

The FORTH dictionary is rather like a dictionary in which some pages have been
deliberately left blank. New words, together with their definitions, may be written
in the blank pages, so that when subsequently a word is looked up in the dictionary
the newly added words will be searched along with the rest. The defining words
are a special class of FORTH operations which have the effect of writing new words
into the 'blank pages' of the dictionary.

So the actual effect of typing:

VARIABLE Year ok

is to add a new word to the dictionary; {Year}. But back in section 2.1 we saw that
all of the words in the FORTH dictionary have an action which takes place when the
word is typed in - and so it is with new words defined by {variable}. Their action is
to push the address of the variable onto the stack. Typing, for example:

Year . 23967 ok

will cause FORTH to print out a very peculiar number - which you've certainly
never seen before! (It's unlikely to be '23967' either!). This is the actual address of
the memory location which FORTH has reserved for the variable {Year}.

Figure 2.3 takes a look inside the dictionary to show a simplified view of the new
dictionary entry for Year.

Year

'action'

1982 address 23967

Figure 2.3 The Dictionary entry for {Year}

The dictionary entry has three distinct parts. The first is a 'name' part which
contains the word "Year". The second specifies the 'action' of the variable, which is
to push onto the stack the address of the third part of the dictionary entry
containing its actual value.2

15

If we now look at the store {! } and fetch {3} operations in more detail, we see that

they are equivalent to the BASIC operations POKE and PEEK. FORTH defines {! >
and {3> as follows:

! (n addr ->) Store n at addr

3 (addr -> n) Fetch contents of addr

These are, like the majority of FORTH operations, 16 bit number operations.

FORTH does have 8 bit store and fetch operations which are useful for single

character manipulation, and are called « ! > and {C3> respectively, more of these in
chapter 7.

The FORTH input:

1 Year +! ok

actually causes the following sequence of events:

i) The first word {1} is not in the dictionary, and is taken to be a number, which
is pushed onto the stack.

ii) The second word {Year} is looked up in the dictionary. If it is found (and it

will only be found if it has been pre-defined using {variable}), then the
address of Year will be pushed onto the stack.

iii) The third word {+!} has the special effect of adding the second number on

the stack into the contents of the address on top of the stack. So year becomes
equal to 1982+1 = 1983.

Of course, it is not necessary to remember this sequence of events every time you

use FORTH variables. Like any self-respecting high-level language, FORTH will let

you use variables without ever knowing where, in memory, the variables are
stored.

2.5 The FORTH {CONSTANT}

Constants are simply convenient ways of representing often-used numbers by a

meaningful name, rather than having to quote the number each time it is needed.

In FORTH, constants must be defined before they can be used, just as variables
must be defined. For example:

1234 CONSTANT Phonenumber ok

defines a constant called 'Phonenumber', with the value '1234'. Typing:

Phonenumber . 7234 ok

will cause the number 1234 to be pushed onto the stack, as if it had been explicitly

typed (this is the actual value of the constant, not its address), and then printed.

The operation {CONSTANT} is, in fact, another example of a 'defining word'. In the

example above, the constant {Phonenumber} becomes a new word in the dictionary,

which returns its value when executed. The value is, however, fixed at the value

supplied when the constant was defined, and may not be changed in the same way

2The 'action' part contains the address of a program which lias the action
specified.

16

that a variable may be altered. This is not strictly true; after all, if your phone

number should change, you could simply type:

5678 CONSTANT Phonenumber ok

which defines a new constant 'Phonenumber', with the new value, even though we

already have a constant called 'Phonenumber'.3

In fact this example illustrates another important feature of the FORTH dictionary:

When a word is looked up in the dictionary, the dictionary is searched in the

reverse order to the order in which new words were added.

Thus, after redefining 'Phonenumber', we actually have two definitions of

'Phonenumber' in the dictionary - but the most recently defined version will

always be used.

If we should need to revert back to the old definition of Phonenumber, then we

may simply 'forget' the new one, using the word (forget}:

FORGET phonenumber ok

Phonenumber . 1234 ok

{FORGET} is a useful 'housekeeping' operation; we can use it to clear out the

dictionary from time to time. But use it with care since {forget <name>> will forget

the most recently defined version of <name> and, in addition, anything defined since

<name>.

2.6 Summary and Exercises
Here is a summary of the FORTH words covered in this chapter, followed by some

practice problems on their use.

In the stack descriptions 'byte' refers to a 16 bit value, but with only the lower 8 bits

set or used by the operation. The upper 8 bits are usually set to zero, 'addr' refers to

a 16 bit value which represents the address of a byte in memory. The addressed

byte may be the first byte of a larger item (i.e. a 16 bit variable).

<name> refers to the next word, delimited by spaces, in the input stream. <name> can

consist of any non-space characters in the standard ASCII character set (see

glossary for a description of ASCII), although the maximum number of characters

and the number of characters which will be stored in the new dictionary entry are

implementation dependent.

Memory:

@ (addr -> n) "fetch"

Fetch from memory the number contained at addr.

! (n addr) "store"

Store n at address.

’Some FORTH systems print a 'warning' message whenever a word is defined
which already occurs in the dictionary. This message should be ignored since

re-defining existing words is a perfectly valid facility.

17

c@ (addr -» byte) "c—fetch"

Fetch the byte contained at addr.

C! (byte addr ->) "c—store"

Store byte at address.

? (addr ->) "question-mark"

Display the number stored at address, using the same format as {.}.

+! (n addr —*) "plus—store"

Add n to the 16 bit value stored at address, using the (+> operation.

Defining Words:

VARIABLE ()

When used in the form: VARIABLE <name> creates a dictionary entry for

<name> with two bytes of storage (in the parameter field - see chapter 9).

When <name> is later executed it will place the storage address on the stack:

<name> (—> addr)

CONSTANT (n ->)

When used in the form: n CONSTANT <name> creates a dictionary entry

for <name> with n stored (in the parameter field). When <name> is later

executed it will leave n on the stack:

<name> (-> n)

Dictionary Management:

FORGET (->)

When used in the form: FORGET <name> the most recently defined

dictionary entry for <name> is deleted, together with all words defined since

<name>. An error occurs if <name> cannot be found.

Exercises

1) Define the following constants:

Name Value

ten 10

fred 4*ten+1

2) Define the following variables, and set them equal to the values:

Name Initial value

XYZ -100

A XYZ-f red

3) Write a FORTFI expression equivalent to the BASIC statement:

LET X = 1 + X + X*X

Assume that the variable X has been pre-defined. Can your solution be

18

improved by the use of Duplication, or even {+!>?

4) Write a FORTH expression to evaluate the quadratic equation:

ax f 2 + bx + c

where x has been defined as a FORTH variable and a, b and c have been

defined as FORTH constants.

5) Show how {CONSTANT} may be used to name any specified memory location,

and then use it like a variable. Don't actually try this on your computer - it

could be disastrous!

19

20

3
The COLON
Definition

So far we have examined in detail two defining words

{variable} and {constant}. Both of these have the effect of adding new words to

the dictionary, new words which will have a special action when executed to make

them into variables and constants. The FORTH word colon {:}, is also a defining

word, but a much more general defining word. Using it we may not only add new

words to the dictionary but actually define the action that the new words will have

when executed.

3.1 Colon Calculations
Suppose that we wish to compute some percentages using FORTH. We could

simply type, for example:

150 12 * 100 / . 18 ok

to calculate 12% of 150. But with more than just one or two percentages to compute

we could really use a special 'percentage' operator, rather like the percent key on a

calculator. With a simple colon definition we can easily define such an operator, as

follows:

: X * 100 / ; ok

and we may now type {%} instead of the sequence {* 100 /}, for example:

150 12 % . 18 ok

This is clearly much neater! It is less typing (and therefore less prone to error), and

more readable as well.

The definition of m is an example of a 'colon definition', which has added a new

word to the dictionary that will have the same effect, when executed, as if the

sequence {* 100 /} had been explicitly typed. Figure 3.1 shows how this colon

definition is structured.

: X * 100 / ;
) - \

start name body end

Figure 3.1 The Colon Definition of {X}

The colon {:} and the semi-colon {;} start and end the definition respectively. A

colon definition always starts with a colon and is always terminated by a

corresponding semi-colon. The <name> part of the definition is the first word

following the colon and is the name given to the new dictionary entry. Just like any

other FORTH input, the colon and the name must be separated by at least one

space. Likewise, the name and the first word in the 'body' must also have at least

one space separating them. The body of the definition may be any valid sequence of

FORTH words (including numbers), and is compiled into the new dictionary entry.

It is the body of the colon definition that defines the action of the new word when it

is later executed.

21

Like the name of variables or constants, the <name> part of a colon definition can

be any length and consist of any characters, but in many FORTH systems the first
three or four characters must be unique.

In the m example, the action consists simply of multiplying the two numbers on

top of the stack and dividing the result by 100. We may thus describe the new word

I7.y just like any other FORTH arithmetic operator by using the conventional (stack
before —> stack after) notation, as follows:

'/• Cn 1 n2 -> percent) Take n2 percent of nl,

percent=n1*n2/100.

Indeed, it is a good idea to document all new words in this manner, so that at any

time you will know exactly what your extended FORTH dictionary contains, and

how to use it. This is particularly useful if you go on to use your newly defined

word in further colon definitions.

3.2 More Percentages
Once «} has been defined, it is treated just like all other FORTH operations, so that
it may be included in complex expressions, like:

500 15 % 2 % . 1 ok

(which computes 2% of 15% of 500), or CU may be included in the body of another
colon definition, for example:

VARIABLE account ok

: invest

account 3 (get account)

12 % (compute interest)

account +! (add into account)

; ok

If we then place £200 in our account by typing:

200 account ! ok

We can discover how much the account will contain after 3 years of accumulating

compound interest at 12%, by typing:

invest invest invest ok

account 3 . 280 ok

Apart from illustrating the effect of a healthy rate of interest, this example

demonstrates a number of new facilities:

i) A colon definition may occupy more than one line of input and, even though

we type a 'return' at the end of each line, FORTH does not complete the

definition and print 'ok' until after the terminating semi-colon. The additional

spaces are ignored and are included merely to improve readability.

ii) Comments may be included by enclosing explanatory, text in (round

brackets). Remember that open-bracket -CO is a FORTH word and, like any

other, must have at least one space on either side. The close-bracket is not a

word, but simply a 'delimiter'’ to indicate the end of the comment.

iii) Newly defined variables (and constants) may also be included in the body of

a colon definition. They are, after all, just words in the dictionary.

22

If we examine the definition of {invest) in a little more detail, we see that {invest)

is not a new arithmetic operator, like {%). It is, in effect, a complete, albeit very
simple, program. The program may be run by typing:

invest ok

{invest) uses the stack during execution, but has no overall stack effect.
Nevertheless, we may still document {invest) (and {account}) in the recommended
manner:

account (-> addr) User variable for invest

invest (->) Add interest at 12% into account

Notice that I have documented these new words in the order in which they were
defined.

3.3 Colon Definition or Program?
Figure 3.2 shows a very simple BASIC program with an equivalent FORTH colon
definition.

BASIC FORTH .

: Squared

10 INPUT X

20 PRINT "Squared = ";X*X

; ok

RUN

?4

Squared = 16 4 Squared =

Figure 3.2 BASIC in FORTH

Line 10 of the BASIC program asks the user to type a number, which is placed in
the variable 'X'. Line 20 then prints the message "Squared = ", and finally the result
of X*X.

The FORTH equivalent is simpler, because rather than asking the user for the
number which is to be squared, the FORTH program takes the number off the top
of the stack and uses that instead. The colon definition has been deliberately given
the name {Squared) so that to run the program we simply type a number, followed
by 'Squared', and hit 'return'. The action of {Squared) is to first print " = " then
multiply the number on top of the stack by itself {dup *} and finally print the result.
This gives us a surprisingly neat and readable way of running a program, for
example:

4 Squared = 16 ok

5 Squared = 25 ok

6 Squared = 36 ok

Notice that if you should forget to type the preceding number, FORTH will respond
with the error message STACK EMPTY:

Squared = 0 STACK EMPTY

This is because {Squared) needs one argument, as we see from its stack description:

Squared (n -*) Print n squared.

23

Two additional features of {Squared} are worth discussing,

i) {Squared} does not need to use a variable, as opposed to its BASIC

counterpart which does. It is a characteristic of FORTH programs that

variables are not often used, the stack being preferred for holding temporary

values, as in {Squared}.

Experienced programmers may be sceptical of this use of the stack, and ask

the question "Does FORTH have an equivalent operation to the INPUT

statement of BASIC?". The answer is that it is possible to request input from

the user, in FORTH (as I will show in chapter 7), but for most applications the

use of the stack to pass input values to a program is preferred. It is certainly

easier and, after all, what could be neater than typing '4 Squared'?

ii) The use of dot-quote {."}. This is the FORTH equivalent of PRINT " ... "in

BASIC, and will print all of the text following {."} until the next occurrence of

the double-quote character ("). Most FORTHs will allow dot-quote to be used

outside a colon definition, for example:

Hi there " Hi there ok

When used inside a colon definition the enclosed message is compiled, and

then printed out when the word is executed:

: GREET Hi there 11 ; ok

GREET Hi there ok

Again, note that dot-quote must have at least one space on either side. The

terminating quote (") is simply a 'delimiter' to mark the end of the text to be

printed and need not be preceded by a space. If it is, then the space will form

part of the printed text.

We can now answer the question posed by the title of this section "Colon Definition

or Program?", by observing that programming in FORTH is achieved by writing

one, or more, colon definitions - in other words, a colon definition is a program.

The comparison between a BASIC program and a FORTH colon definition serves to

illustrate this principle but the analogy must not be taken too far; the BASIC

programmer develops, extends and edits one program to achieve his goal, whereas

the FORTH programmer achieves the same goal by writing a series of colon

definitions, each of which is compiled and added to the dictionary, and tested

separately. Furthermore to run a number of different BASIC programs requires that

each one is separately loaded and RUN, but compiled FORTH is so compact that

many different programs may coexist together in the dictionary and any one of

them may be run just by typing its name.

3.4 Interpret.. Compile?
Since I have used both 'interpret' and 'compile' to describe FORTH on different

occasions in this book so far, now is perhaps the time to clarify these terms. Let us

consider the simple subtraction:

200 50 - . 150 ok

as soon as we finish typing the line of input and hit the 'return' key (after the {.}

symbol), FORTH interprets the input in the manner already described; each word is

24

in turn looked up in the dictionary. If it is found, it is executed, otherwise it is

treated as a number and pushed onto the stack.

Any FORTH which may be typed in and executed in this way may also be included

in a colon definition, by simply preceding the input by C: name) and terminating it

by {;>. The initial colon has the effect of switching FORTH from 'interpret' mode

into 'compile' mode and the terminating semi-colon has the opposite effect.

Treating our simple subtraction example in this manner gives us the following

colon definition:

: example 200 50 - . ; ok

The initial colon generates a new dictionary entry with the name 'example', and

switches FORTH into 'compile' mode so that the following program, up to the

semi-colon, is compiled into a compact set of instructions which are placed into the

new dictionary entry. Figure 3.3 illustrates this example:

Figure 3.3 A New Dictionary Entry

The new dictionary entry starts with the name of our new word, in this case

'example' and contains four instructions, each one corresponding to a word in the

body of the colon definition - the first is 'push 200 onto the stack' - the second is
'push 50 onto the stack' - and so on.

To execute these instructions we type:

example 150 ok

to produce exactly the same result as the original interpreted input.

In reality, the actual compiled instructions in the dictionary are not as long winded

as they might appear from figure 3.3. Each consists simply of the 'address' of the

corresponding dictionary entry (i.e. the dictionary entry for the word {-}, or {.}).

The 'code pointer' points to a fast 'run-time' program which will execute the words

in the definition by 'calling' each address in turn. This, and other details, are

covered in depth in chapter 9, but for the present we shall note that:

Ordinary FORTH is interpreted (and executed) straight away, but if the same

input is enclosed in a colon definition, then it is compiled, and may be later

executed by typing the name of the colon definition.

3.5 Creating tables and arrays
Array storage is a common requirement in many programs, and accordingly most

languages provide facilities for setting up arrays. In BASIC arrays are 'dimen-

25

sioned' using the 'DIM' statement.

FORTH does not have an equivalent to 'DIM' in its standard word set, but does
provide all of the necessary operations to 'build' arrays whenever they are needed.
(Remember that because FORTH is an extensible language it doesn't need to have
all of the facilities you are ever likely to require pre-defined.)

The easiest way of reserving array space in the dictionary is with the word {ALLOT}:

ALLOT (n ->) Allot an extra n bytes of space to the

most recently defined dictionary entry.

{ALLOT} may be used together with {variable}. For example:

VARIABLE double 2 ALLOT ok

will have the effect of defining a new variable named {double}, with space for a
single value, but {2 ALLOT} then reserves an extra 2 bytes so that the variable
{double} has room for 2 values altogether. (A single value takes up 2 bytes of
memory). Figure 3.4 illustrates the whole dictionary entry for {double}.

Figure 3.4 The Dictionary entry for {double}

We now have, in effect, a two element 'array'. The word {double} will return the
address of the first number in the array, add 2 and we have the address of the
second number. For example:

100 double ! ok

200 double 2i ! ok

will initialise the array to contain the values 100 and 200,

1 double 2+ +! ok

double 2+ ? 201 ok

increments the second number, and prints its new value.

An alternative and, in many ways, neater way of setting up arrays is to use the
defining word {create}, {create} is exactly like {variable}, except that it reserves
no space in the dictionary entry. To set up an array using {create} we must {allot}

the whole of the space required. For example:

CREATE array 40 ALLOT ok

defines an array with space for 20 numbers.1

Instead of using {allot} we could use {,} (pronounced "comma") to both reserve
space and set each element to an initial value. {,} has the effect of popping the
number off the top of the stack, and storing it in the next free location (2 bytes) in
the dictionary; thus, it is particularly useful for setting up tables of constants. For
example:

26

CREATE TABLE -10 , -5 , 0 , 5 , 10 , ok

defines a five element array with values-10, -5, 0, 5 and 10. Again, we may pick out

any value by adding an offset to the address returned by {TABLET, as before, but a

special colon definition is the best way to do this. For example:

: TABLES 1- 2 * TABLE + S ; ok

To pick out an entry simply precede the word {tables) by the number of the

required entry, for example:

5 TABLES . 10 ok (print the fifth entry)
1 TABLES ok (fetch the first entry)
2 TABLES ok (and the second)
+ . —15 ok (and add them)

Notice the use of the word {1—> in the definition for {tables), and the word {2 +) in

the examples with {double) earlier. FORTH defines four often used additions and

subtractions for convenience, {1 +), {1 -), {2 +) and {2-}, which are identical in

action to their equivalent phrases {1 +), {1 —), {2+)and{2-) but are usually defined

in machine-code for faster execution.

3.6 The Stack Notation Extended
In the last chapter I promised to describe a technique for illustrating the stack

during program execution and it is just such a technique which we could use to

clarify the operation of {tables) above. The technique is to list vertically each word

in the body of the colon definition. Then look up each word, in turn, in the FORTH

Handy Reference, and note down the stack effect of that word, remembering that

the 'stack after' list becomes the 'stack before' list for the next word down.

Figure 3.5 illustrates this notation in describing the operation of {tables):

WORD Stack Effect Comments

1- (n^-> n—1) subtract 1 from index.

2 (n—1 -> T\—1 2) push 2 onto stack.

* (n—1 2 '-> offset) multiply to give offset.

TABLE (offset -> offset addr) fetch start address of TABLE.

+ (offset addr -> offset+addr) add offset.

S (offset + addr -> +n) fetch value required.

Figure 3.5 The operation of {tables)

One feature is worth noting in particular;

The 'stack before' list of the first word, and the 'stack after' list of the final

word, give the overall stack effect. These are indicated by + in figure 3.5 and

'Important note - on some FORTH systems the word {create) cannot be used
like this, and (variable) must be used instead, i.e.:

VARIABLE array 38 ALLOT

See your system documentation to find out which vou must use!

27

enable us to formally describe {tables} as follows:
TABLES Cn 1 -> n2) Fetch the entry from TABLE indexed by

nl. nl must be in the range 1 to 5.

The author has found this stack notation invaluable in developing FORTH
programs with complex stack manipulations, and far from being cumbersome the
technique soon becomes rapid as familiarity is gained. In particular, the
experienced FORTH programmer will not have to refer often to the Handy
reference, and will place words in the left hand column in groups of more than one,
where the stack effect is very clear (or none at all) so that the whole diagram is
much simplified.

Another useful technique for 'debugging' FORTH programs is to use the word
{DEPTH} with {.} to print the number of values contained on the stack at certain key
points in the definition under development. If we define:

: .S CR DEPTH . ; ok'

{. S} will print the number of values on the stack, without affecting the stack at all.
Including this in a new definition:

: TABLES 1- 2 * .S TABLE + .S 9 ; ok

... 0 STACK EMPTY (clear the stack first)

4 TABLES

1
1 ok

shows us the number of stack values at the points marked by {. S} in the definition,
and that all is well during execution! We can now FORGET {tables} and redefine it
without {.S}.

3.7 Summary and Exercises
The following new words have been introduced in this chapter:

Stack Manipulation:

DEPTH (-> n)

Leave the number of values contained on the stack, not counting n.

Arithmetic:

1 + (n

Increment n by 1.

1— (n

Decrement n by 1.

2 + (n

Increment n by 2.

2- (n

Decrement n by 2.

n + 1)

n—1)

n + 2)

n—2)

"one—p tus"

"one—minus"

"two—plus"

"t wo—minus"

28

Defining Words:

: (

Used in the form:

"colon"

: <name> ;

Creates a dictionary entry for <name>, and sets 'compile' mode so that
subsequent words from the input stream are compiled into the new
dictionary entry. These will be executed when <name> is later executed.

; (—») "semi—colon"

Terminate a colon definition and stop compilation.

CREATE (->)

Used in the form: CREATE <name> to define an empty dictionary entry for
<name>. When <name> is later executed the address of (the parameter
field for) <name> is left on the stack:

<name> (-» addr)

Dictionary Words:

ALLOT (n ->)

Reserve n bytes in (the parameter field of) the most recently defined
dictionary entry.

, (n —>) "comma"

Allot two bytes in the dictionary and store n there.

Output:

." (—>) "dot—quote"

When used in the form: ." text" the text up to but not including the delimiter
character " is printed. If dot-quote occurs within a colon definition, then the
text is compiled so that it will be printed at execution time. Up to 127
characters may be enclosed.

Miscellaneous:

((—») "paren"

When used in the form: (text) the enclosed text will be ignored. The
delimiting "close-paren" character) is not a FORTH word and need not be
preceded by a space, but must be separated from the following word by at
least one space.

Exercises

1) Write a fast colon definition to triple the number on top of the stack.

29

2) Write a colon definition, {newpage}, which will print a form-feed, followed by
"Page - ", and finally print the page number supplied on the stack.
(Hint: you will need to use the word {EMIT} to print the form-feed).

3) Create an array with 4 entries, set initially to the values, -10, 1, 10, and 1000.
Define a word to calculate the address of the i'th entry, where i can be 0, 1, 2
or 3.

4) Define a word that will double the value of each of the current entries in the
array of question 3.

5) Use the technique described in section 3.6 to explain the operation of the
following colon definition, and therefore deduce its overall stack effect:

: example DUP * SWAP DUP * + ;

(Hint: the stack initially needs two values on it).

30

4
FORTH Structures 1,
IF

The one BASIC statement for which FORTH has no
equivalent is 'GOTO' but the fact that FORTH is a fully structured language means
that it doesn't need a 'GOTO'. This may seem an outlandish claim but it is not;
indeed many experienced programmers feel that GOTOless programming is best. It
makes for programs, they say, which are readable, self documenting and, above all,
'structured'. What does 'structured' programming mean? Well, three features make
a structured language:

i) The ability to execute a sequence of operations, one after the other.
ii) Conditional testing and the execution of either one sequence or another

sequence depending on the result of a conditional test.
iii) Repetitive execution of a sequence of operations, until some condition is met,

or while a condition is true.

FORTH has each of these requirements, the first has already been illustrated by all
of the examples so far, it is, of course, a pre-requisite of virtually any programming
language. FORTH provides the second requirement in the conditional structure IF
.. ELSE .. THEN, and the third in a set of looping structures, the DO loop, UNTIL
loop, and WHILE loop. This chapter describes the conditional IF structure, and the
comparison and logical operations which accompany it. The looping structures are
covered in detail in chapter 5.

4.1 True or False?
A word which will test the sign of a number, and confirm whether that number is
negative or not, could be defined as follows:

: Negative? 0 < IF Yes " THEN ; ok

and is used by simply typing a number, followed by 'Negative?':

-20 Negative? Yes ok

20 Negative? ok

A refinement of {Negative?} would be the inclusion of an {ELSE} clause:

: Negative? 0 < IF Yes " ELSE No " THEN ; ok

the new definition of {Negative?} supersedes the old one, so FORTH will now print
a reply whether the number is negative, or positive:

-1 Negative? Yes ok

1 Negative? No ok

Let us examine this new definition of {Negative?}. Upon execution the value 0 is
first pushed onto the stack. The word {<} then compares the top two numbers on
the stack and tests for the second less than the first (on top of the stack). {<}
replaces these two numbers by a single number called a flag, which may only have
one of two values, true or false. In this particular example the number on top of the
stack is 0, so {<} is actually testing for the second number less than 0, i.e. negative.

31

The next word is -CI F> which pops the flag off the stack and causes the words
immediately following to be executed if the flag were true, or those following the
{ELSE} if the flag were false. In either case, execution continues after {then}, which
must be included to properly terminate the {IF} structure even though the colon
definition ends immediately after {THEN} as in this example. The {ELSE} clause is
optional, as illustrated by the earlier version of {Negative} above.

The Tess-than' word {<} is one of a special class of FORTH words called
'comparison words', which usually occur immediately before the {IF} word. The
formal definition of {<} is:

< Cn 1 n2 -> flag) flag is set 'true1 if n1<n2,

fa Ise otherwise .

nl and n2 may be any single-precision numbers, and flag is also a number but one
which represents the logical values true or false, according to the following
convention:

Logical value Numerical value

true 1

false 0

A few examples will demonstrate the flag value:

-2 4 < . 1 ok

20 10 < . 0 ok

-2 is indeed less than 4, so {<} returns the value 1, which represents 'true'. 20 is not
less than 10, so {<} instead returns 0, representing 'false'. Notice that the numbers
which are to be compared are entered in the same order as they would be in
ordinary notation, if we wish to test for nl less than n2, we write in FORTH:

nl n2 <

4.2 The IF structure defined
Figure 4.1 illustrates the general form of the IF structure:

conditional words

IF

'true1 words

ELSE

'false' words

THEN

Figure 4.1 The full IF structure

The conditional words must place a logical 'flag' value onto the stack and will
usually involve 'comparison' words like {<}, but not necessarily, since {IF} will
treat any non-zero number as 'true' but only the value zero as 'false'.1

‘Programmers who go for 'minimal' solutions can take advantage ot this feature
when testing for non-zero since such a test involves no comparison operation at all!
For example:

: nonzero? IF yes" THEN ; ok

34 nonzero? yes ok

32

The 'true' words are executed whenever the value taken off the stack by C i F > is
non-zero, or true, the 'false' words are executed if the value is zero, or false. The
true words, or false words, may be any sequence of valid FORTH, including further
(if .. else .. then} structures and in this way IF structures may be nested to
virtually any depth.

As illustrated by the first example in this section, the ELSE clause is optional and
may be omitted so that the whole structure reduces to its simpler form, shown in
figure 4.2:

conditional words

IF

'true1 words

THEN

Figure 4.2 The simple IF structure

Conditional structures, and indeed all of the structures which I describe in this
chapter and the next, may only be used inside colon definitions. The reason for this
is that such structures contain forward jumps which are not known until the whole
colon definition has been compiled.

Figure 4.3 shows the correspondence between an IF statement in BASIC and the
FORTH IF structure, and emphasises in particular the re-ordering which is
characteristic of FORTH!

BASIC: IF A = 2 THEN PRINT "A=2"
V-^

FORTH: A (a 2 = IF A = 2" THEN

Figure 4.3 BASIC IF -* FORTH IF

The FORTH in figure 4.3 would be part of a colon definition and assumes that the
variable A has already been defined using {variable}. A new comparison word {=}
is illustrated, {=} is similar to {<} in that it replaces the top two values on the stack
by a single flag value, but in this case the flag is set to 'true' only if the two values
are equal.

4.3 Nested IF structures
Figure 4.4 illustrates a colon definition which incorporates two IF structures, one
nested inside the other. The word defined {Grade} will have the effect when
executed of printing one of three grades, 'Fail', 'Pass' or 'Distinction' depending on
a score on top of the stack:

: Grade DUP 40 < IF

." Fail"

DROP

ELSE

70 < IF

Pass"

ELSE

Distinction

THEN

THEN ;

Figure 4.4 The definition of {Grade}

(Less than 40)

(40-69)

(greater than 70)

33

The whole of the second IF structure is encompassed within the ELSE clause of the
outer IF structure, in the manner illustrated in figure 4.5:

conditional A IF-

AAAA

ELSE -

conditional B IF-

BBBB

ELSE-

CCCC

THEN-
THEN-

Figure 4.5 Nested IF structures

If corresponding {if .. then} words are joined by lines, as in figure 4.5, then the
lines should never cross, but remain nested one inside the other. If this is not so,
then the program is not only meaningless but also invalid FORTH! It is common
practice in FORTH to indent nested structures simply to aid readability by humans
(computers have no trouble either way!). This is true also of other structured
languages such as Pascal, but the BASIC programmer may find it unusual.

In figure 4.5, if conditional A turns out to be 'true', then the AAAA words are
executed, but if conditional A were 'false' then conditional B will be tested,
resulting in either BBBB or CCCC to be executed. Looking again at our original
{Grade} example in figure 4.4, if the number on top of the stack is less than 40 the
first IF will be true, 'Fail' is printed, {DROP} is executed, and the program finishes. If,
however, the number on top of the stack was 40 or greater, then conditional B will
be tested to decide between 'Pass' or 'Distinction':

25 Grade Fait ok

54 Grade Pass ok

70 Grade Distinction ok

Notice the use of {DUP} preceding the conditional A test in {Grade}. This is to ensure
that the score being tested remains on top of the stack for conditional B, if
necessary. The inclusion of {drop} is to clear the extra value off the stack if it is not
needed (that is if conditionalB will not be executed), so that the overall stack effect
of {Grade} will be the same whichever route through the IF's is taken upon
execution:

Grade (n ->) Print ’Fail’ if n<40, 'Pass’ if

40<=n<70, or print 'Distinction'

otherwise.

This illustrates another point to be wary of in definitions involving conditionals:

Make sure that, whichever route is taken through a conditional structure, the
overall stack effect is the same.

Adherence to this principle will avoid many confusing bugs!

4.4 Logical Operators for Complex Conditionals
Quite often an IF statement involves more than one comparison, combined by
using logical operations - AND, OR etc. For example, to test if X lies between a
lower and an upper limit we could write, in BASIC:

34

IF <X>10) AND (X<100) THEN

which tests for X in the range 11-99. This could be written, in FORTH:

x a IQ > IF
x a loo < if

THEN

THEN

but a much better, and simpler, solution is to use the word {and}, as follows:

x a io > x a loo < and. if

THEN

Here we have written the two comparisons separately, CX a 10 > > leaves a flag on the

stack, and the second comparison {X a 100 <} places a second flag onto the stack.

These two flags are then combined by {AND}, to leave a single flag which will be true

only if both comparisons were true. The operation of {AND} is described by the

following:

AND Cn 1 n2 -> n3) n3 = nl AND n2

0 AND 0 = 0

0 AND 1 = 0

1 AND 0 = 0

1 AND 1 = 1

(0 = 'false', 1 = ’true1)

Although {AND} is used in the above example to combine flag values, (0 or 1), it will

perform a logical 'bitwise' AND between complete 16 bit numbers, as will the other

FORTH logical operators, {OR} and {X0R}. We can easily demonstrate this as

follows:

5 ok (= 101 binary)
6 ok (= 110 binary)

AND . 4 ok (= 100 binary)

Each bit in the binary equivalent of 4 is the result of separately ANDing the

corresponding bits in the numbers 5 and 6.

Returning to our IF example, we see that the comparisons are performed upon a

variable X, and this has simplified the expression to a certain extent because the

value of X may be fetched each time it is needed for a comparison using the phrase

{x a}.

More often, however, we shall need to perform a number of comparison tests upon

the single value on top of the stack and this will require some stack manipulation.

Suppose, for example, that we need to test if the number on top of the stack is less

than 0 OR greater than 100. The condition test in front of an IF might appear:

DUP 0< SWAP 100 > OR IF

Notice that the joining of 0 and < is not a printing error! {0<} is simply a more

convenient (and usually faster) version of the two word sequence {0 <}. FORTH

defines a number of often used 'comparisons with zero', whose overall stack effect

is, in each case, identical to the effect of {0} followed by the comparison operation.

We can analyse the operation of the whole sequence above using the stack notation

35

described in the last chapter:

Uord Stack Effect Comment

DUP Cn -» n n) Duplicate top of stack

0< (n n -> n f Lag 1) f lagl true i f n i negative

SWAP (n f Lag 1 -> f Lag 1 n) swap n and flagl

100 (flagl n --> flagl n 100) push 100

> (flagl n 100 -> flagl f l a g 2) f l a g 2 true if n> 100

OR (flagl f l a g 2 -> f t a g 3) OR the two flags

The key operations in this sequence are the initial duplication, which gives us two

copies of the number n - one for each comparison operation, and the {SWAP} which

rearranges the stack so that flagl is preserved while the second comparison takes

place - ready for the final {or>. {OR} has the effect of combining the two flag values

so that the resulting flag3 will be true if either flagl OR flag2 (or both) were true.

4.5 The Missing Comparison operations
FORTH only defines three basic comparison operations; {<}, {=> and {>}, what

about "less than or equal to", "not equal to" and so on? Well these operations are

not defined in the standard system because we may very easily define them

ourselves, if necessary, with the help of {NOT}, as follows:

: <= > NOT ;

: <> = NOT ;

: >= < NOT ;

In each case {NOT} reverses the truth value of the flag produced by the previous

comparison operation, so that 'true' becomes 'false', and 'false' becomes 'true'.

It is a characteristic of FORTH that rather than clutter up the dictionary with an

exhaustive set of operations, those whose definitions are trivial, like the ones

above, may be defined by the user as needed.2

Another useful comparison operation is "unsigned less than", {U<}, which

performs a 16 bit magnitude comparison. The operation can be used to compare

unsigned numbers, as follows:

1 60000 U< . 7 ok (= true)

50000 40000 U< . 0 ok (= false)

or we can make use of the fact that negative numbers appear to be large positive

numbers if treated as unsigned, to simplify certain comparisons. For example, the

phrase:

100 u<

has exactly the same effect as the phrase:

DUP 0< NOT SWAP 100 < AND

and tests if the number on the stack lies within the range 0-99.

:Sceptical readers may ask "What about (0<). surely this operation could have

been left out. and defined by the user when needed?" In fact in most FORTH
systems (0<) is a more 'primitive' operation than {<>, which is defined as:

: < - 0< ;

36

Finally, a useful combined stack manipulation and comparison operation is f?DUP>,

which duplicates the number on top of the stack only if it is non-zero (true). {?dup>

normally precedes Cl FI so that if the number on top of the stack is non-zero, then it

is duplicated for use within the IF structure, alternatively if the number is zero,

then the stack is left cleared. For example:

: EXAMPLE ?DUP IF Non-zero number is" . THEN ; ok

34 EXAMPLE Non-zero number is 34 ok

0 EXAMPLE ok

4.6 Summary and Exercises
The following new words have been introduced in this chapter:

Stack Manipulation:

?DUP (n ^ n) or (n ^ n n) "query-dupe"

Duplicate n only if it is non-zero.

Comparison:

< (n 1 n2 -» flag) "Less-than"

Flag is true if nl is less than n2.

= (nl n2 -> flag) "equals"

Flag is true if nl equals n2.

> (nl n2 -> flag)
"greate i—t han"

Flag is true if nl is greater than n2.

0< (n -> flag) "zero-less"

Flag is true if n is less than zero (negative).

0= (n -> flag) "zero-equals"

Flag is true if n is zero.

0> (n -• flag)
"zero-greater"

Flag is true if n is greater than zero (positive).

U< (uni un2 -> flag) "u—less—than"

Compare the magnitude of the unsigned 16 bit numbers uni and un2, leaving

the flag 'true' if uni is less than un2.

NOT (flagl -» f Lag 2)

Reverse the truth value, so that false becomes true or true becomes false.

37

Logical:

AND < n1 n2 -> and)

Leave the bitwise logical AND of nl and n2,

0 AND 0 = 0

0 AND 1 = 0

1 AND 0 = 0

1 AND 1 = 1

OR (nl n2 -» or)

Leave the bitwise logical OR of nl and n2,

0 OR 0 = 0

0 OR 1 = 1

1 OR 0 = 1

1 OR 1 = 1

XOR (nl n2 —> xor) "x—or"

Leave the bitwise logical exclusive-or of nl and n2,
0 XOR 0 = 0

0 XOR 1 = 1

1XOR 0 =1

1 XOR 1 = 0

Control Structures:

IF (flag ->)

Used in a colon definition in the form:

flag IF ... ELSE ... THEN Or,

flag IF ... THEN

If the flag is true (non-zero) the words following IF are executed, and the

words following ELSE are skipped. If the flag is false, then the words

between IF and ELSE are skipped, and the words after ELSE are executed.

The enclosed words may include control structures.

else (->)

See IF above.

THEN (->)

See IF above.

Exercises

1) Show how the stack will be affected by the following comparison operations:

1 2 >

—4 0<

5 0> NOT

2) Define a new word, {SIGN}, which will have the effect of printing one of three

38

messages 'positive', 'zero' or 'negative', corresponding to the sign of the

number on top of the stack.

3) What will be the results, in binary, of the following logical operations:

1101101 1010001 XOR

1010 101 OR

45= 2 3 < OR

4) How would you write the following BASIC IF statement in FORTH. Assume

that the variables A and B have been pre-defined.

IF NOT C(A = 2) AND <B = 2)) THEN LET A = 4

5) Do the FORTH words {NOT} and {0=} have anything in common?

6) Can you deduce the effect of the following colon definitions, when executed:

: exl OVER OVER > IF SWAP THEN DROP ;

; ex2 DUP IF DUP THEN ;

39

40

5
FORTH Structures 2,
Loops

In the introduction to the previous chapter, I men¬
tioned that the third requisite of structured programming is the ability to execute a
sequence of operations repetitively, in loops. FORTH provides three looping
structures, the DO loop, the UNTIL loop and the WHILE loop. This chapter covers
these three structures and then goes on to describe how 'nested' structures are
constructed and debugged.

5.1 The DO Loop
The simplest (and most commonly used) of the three FORTH looping structures is
the DO loop, used whenever we know beforehand, or can calculate, how many
times a loop is to be repeated. Like the IF structure, DO loops may only occur inside
colon definitions - so I will illustrate the DO loop with a simple definition:

: Underline CR 16 0 DO " LOOP ; ok

UnderLine

-ok

The two numbers 16 and 0 before the word {D0> tell the DO loop how many times it
should be repeated. The first number is the 'limit' value and the second the 'index'
value. The loop repeats (limit-index) times, which is (16-0 = 16) in this case, causing
{." to be executed 16 times with the effect shown.

The DO loop structure may be summarised as follows:

limit index DO ...FORTH words... LOOP

In this particular form of the DO loop, the limit value should always be greater than
the index value, and the 'FORTH words' are always executed (limit-index) times. If
the limit value is not greater than the index value, then the 'FORTH words' will just
execute once, and the loop terminates. In either event, after the DO loop has
finished, execution will continue of any words after {LOOP}.

Since the word {DO} simply takes its limit and index values off the stack we need not
actually supply these values in the colon definition, but could make one or both of
them into parameters for the newly defined word. In practice, it is most useful to
have the index value, but not the limit value, supplied inside the colon definition.
For example:

: Curses! 0 DO CR ." Oh Dear!" LOOP ; ok

4 Curses!
Oh Dear!

Oh Dear!

Oh Dear!

Oh Dear! ok

You really could type {1000 Curses!} if you wanted to!

On reflection, it should be apparent that for most applications we must be able to
use the index value as it counts up through the loop for calculations inside the loop.

41

FORTH does allow us to fetch the index value using the special word -CI >, but
before describing {I > we must look in more detail at the way a DO loop is actually
executed.

5.2 The DO Loop in action
During execution the DO loop makes use of a second special purpose stack called
the RETURN stack to hold the index and limit values.1

The sequence of events of a DO loop go something like this:

i) The word {DO} is executed once only, and simply transfers the top two values
on the normal stack, onto the return stack as shown in figure 5.1.2

DO

index \ empty

limit

Normal Stack

NS empty index

limit

Return Stack

Figure 5.1 The Stack effect of {do>

ii) The words enclosed inside inside the DO loop are executed as per normal.

iii) The word {LOOP} adds 1 to the index value on top of the return stack, and
compares it with the second value on the return stack, the limit value. {LOOP}

does not affect the normal stack in any way.

If the new (incremented) index value is less than the limit value, then a jump
occurs to just after the {DO}, for another loop, shown in figure 5.2.

LOOP

i ndex index+1

limit limit

return stack

Figure 5.2 Stack Effect of {loop}, index+1 < limit

If, on the other hand, the incremented index value equals the limit, then the
two values are cleared off the return stack, and execution continues after
{LOOP}, as shown in figure 5.3.

'The RETURN stack is primarily used, by FORTH, to hold 'return' addresses
during interpretation of the typed input. The return stack is, however, free for use
inside a colon definition where it is used by the DO loop, as shown here. The
FORTH programmer may also use the return stack inside colon definitions, as an
extra stack, but with care! See chapter 8.3 for a note on this.

"By 'normal' stack I mean the stack we have been using throughout. Some
FORTH programmers refer to it as normal stack', 'parameter stack', data stack' or
just plain 'stack'!

12

LOOP

index =limit empty

limit

return stack

Figure 5.3 Stack Effect of {loop}, end of loop.

The overall effect of the DO loop on the return stack is thus to leave the return stack
as it was before the DO loop - empty in the case illustrated above. Note that
although the above description of the DO loop in action may seem complicated, in
practice the FORTH programmer need not consider this since the DO loop takes
care of itself.

5.3 Loop Calculations
The FORTH word -CI > mentioned earlier is normally only used inside a DO loop
and has the special effect of making a duplicate copy of the current index value, (on
top of the return stack), and pushing this onto the normal stack - thus making it
available for calculation, for example:

: Squares 0 DO

II*.

LOOP ; ok

10 Squares 0 1 4 9 16 25 36 49 64 81 ok

Again, it is instructive to analyse the operation of {Squares} using the stack
notation, remembering that we are picturing the normal stack only here, not the
return stack:

Uord Stack Effect

0 (n* -> n 0)

DO (n 0 ->)

I <t i)

I (i -> i i)
* (i i -> i*

(i * i -> t)

LOOP (-> *)

The starred positions * in the diagrai

Comment

set index at 0

set up Loop from 0 to n

fetch counter

fetch it again (same value)

square it

and print the result

terminate loop

indicate the overall stack effect of {Squares}:

Squares (n -») Print n squares from 0 to n—1

squared.

Notice also that the stack is empty in the two positions indicated by t. It is
important that any repetition of a loop should not cause an overall addition or
removal of a number on the stack otherwise stack empty, or stack overflow (full)
errors may result after multiple repetitions of the loop. It is generally good practice
to ensure that the stack at the start and end of the loop, as in t, has the same
number of values on it (zero in the above example) although there are exceptional
cases where this rule is broken - by experienced FORTH programmers!

There is clearly a great similarity between the DO loop and the BASIC FOR
statement and BASIC programmers may find the comparison shown in figure 5.4
helpful.

43

10 FOR A=0 TO 9

20 PRINT A*A;

30 NEXT A

Squares

10 0 DO

II*.
LOOP

BASIC FORTH

Figure 5.4 BASIC FOR and FORTH DO

Notice in particular that the limit values are different in both cases. The BASIC FOR
loop executes for A from 0 to 9 inclusive, but to achieve the same range in the
FORTH DO loop requires setting the limit to 9+1 = 10.

5.4 {+loop} for interesting increments
A very necessary refinement of the DO loop is the use of the word {+loop> to
specify loop step values other than +1. {*loop> is used in the place of {LOOP} and is
similar, except that upon execution, {+L00P} pops the number off the top of the
stack and adds this to the index counter before deciding if the loop has finished or
not. So, for example, if we required a loop to step through the values 3, 6, 9,12, and
15, the appropriate DO loop construction would appear:

16 3 DO

3 + LOOP

Likewise if we should want to step down through a set of values, say for example,
10, 5, 0, -5, -10, we would write:

-11 10 DO

-5 + LOOP

Notice that the loop still finishes when the index value equals (or passes) the limit
value.

Of course, the 'step' value could be a value calculated within the loop, as in the
following example:

: Example 100 1 DO

I .

I +L00P ; ok

Example 1 2 4 8 16 32 64 ok

Thus providing a very neat way of looping through an interesting set of values,
which would otherwise have to be calculated!

5.5 Nested DO loops, and other Specialities
Just like all of the structures, DO loops may be nested inside each other within the
same colon definition. In fact, in case you had not guessed already, any of the
FORTH structures may be nested inside any other - so that we may have IF's
within DO loops, or vice versa. First, however, let us look at an example of nested
DO loops:

44

: Timestable CR 11 1 DO

11 1 DO

J I * .

LOOP

CR

LOOP ;

Timestable
123456789 10

2 4 6 8 10 12 14 16 18 20

3 6 9 12 15 ...etc.

The word defined here {Timestable} has the effect, when executed, of printing a

ten times table.3

The operation of {Timestable} relies on the word {J} which appears inside the inner
loop. {J} is similar to {1} except that {J} pushes the index of the next outer loop
onto the stack. (Which is actually the third value down on the 'return' stack, but
you don't really need to know this in order to use {J}). Thus for each repetition of
the outer loop, which you can think of as] stepping from 1 to 10, the inner loop
repeats 10 times, that is, I steps from 1 to 10. Multiplying J and I thus gives us 1*1,
1*2,1*3 .. 1*10, and then 2*1, 2*2, 2*3 .. 2*10, and so on up to 10*10 - in other words,
a ten times table. In case the operation of {Timestable} still is not clear, here it is
again together with an equivalent program in BASIC, in which I have deliberately
chosen the FOR loop variables to be J and I respectively:

BASIC FORTH

: Timestable

11 1 DO

11 1 DO

J I * .

LOOP

CR

LOOP

f

Figure 5.5 Nested DO loops, BASIC and FORTH

Remember that {J} and {1} in FORTH are not variables despite the fact that they
are used rather like variables in this example.

One further word which like {1} and {J} is used exclusively inside a DO loop is
{LEAVE}, which allows a loop to be terminated prematurely. The effect of {leave} is
simply to set the limit value which is second on the return stack equal to the current
index value on top of the return stack. Thus, the next time that {loop} (or {+L00P}) is
executed the loop will not be repeated, {leave} is normally placed inside an IF
structure within the DO loop, as illustrated here:

10 FOR J=1 TO 10

20 FOR 1=1 TO 10

30 PRINT J*I;

40 NEXT I

50 PRINT

60 NEXT J

■'Most FORTH systems define a special printing word {.R>, which is the same as
{.} except that it prints the number second on the stack, right justified, in a field
width given by the value on top of the stack. Replacing {.> by the phrase <4 .R) in

{Timestable) will thus result in a neater columnar output format. For a definition of

{. R) see chapter 8.4.

45

: example 10000 1 DO

I .

7TERMINAL IF

LEAVE

THEN

LOOP ;

This example assumes that a word {?terhinal> has already been defined, to have
the effect of checking the keyboard to see if a key has been pressed. L?terhinal>

should return the flag 'true' if a key has been pressed, 'false' if not. (Most FORTH
systems do define such a word, although it is not in the FORTH-79 standard.)

7TERMINAL (-» flag) Set flag to true if a key

has been pressed, false if not.

Upon execution {example} will simply count from 1 to 9999, but may be halted at
any time by hitting any key on the keyboard. A useful facility if you do not want to
wait until the program completes normally!

Before leaving this example, it is worth noticing the form of the nested IF structure
inside the DO loop:

do---

IF -

THEN -

LOOP -

Joining the IF and THEN, and the DO and LOOP with lines shows that the IF
structure is fully enclosed within the DO loop, and the whole structure is therefore
correctly formed. If the lines should cross over, then the structure is informed, and
will not work correctly, as shown by figure 5.6.

DO IF LOOP THEN

Figure 5.6 NOT a valid FORTH nested structure

If you are ever unsure of the correctness of nested structures, then simply apply
this Tine' test, by joining corresponding DO .. LOOP, IF .. THEN (or BEGIN ..
UNTIL, and BEGIN .. REPEAT) words, and if any lines should cross, then the
structure is probably informed.

5.6 The UNTIL loop
The DO loop is often referred to as a 'definite' loop because of the way that the
number of repetitions is definitely determined before the loop starts. (Unless you
use {leave} within the DO loop!) The UNTIL loop and the WHILE loop are known
as 'indefinite' loops because in both cases the number.of repetitions cannot be
known until during execution of the loop. In each case the continued repetition of
the loop depends upon the result of a conditional test within the loop.

The general form of the UNTIL loop is as follows:

BEGIN

FORTH words

condition UNTIL

46

in which the 'FORTH words' are executed repetitively until the 'condition' is 'true'.
The 'condition' will normally involve comparison words, like the conditional part of
the IF structure - and, moreover, the 'condition' normally tests a result of the
FORTH words inside the loop. The condition test must leave a 'flag' on top of the
stack which will be tested by {UNTIL}. An example of a colon definition involving an
UNTIL loop is as follows:

: wait BEGIN

KEY

32 = UNTIL ;

Another new word is introduced in this example {key}, which has the effect of
waiting until a key has been pressed on the keyboard, and then leaves the ASCII
value of the key on top of the stack:

KEY (-> char) Wait until a key has been pressed

and leave its value on the stack.

The 'condition' part of the UNTIL loop in {wai t> simply tests the value of the key
pressed for the value 32 (='space'), and loops indefinitely if it was not. The overall
effect of {wai t> will thus be to cause the system to wait until you press the 'space'
key on the keyboard before responding. Here is {wait} described in more detail:

Uord Stack Effect

BEGIN (->)

KEY (-> char)

32 (char -» char 32)

= (char 32 —* f lag)

UNTIL (flag ->)

Comment

Start loop (no stack effect)

Get character from keyboard

ASCII vaLue of 'space1

flag is 'true' if char=32

Loop back to BEGIN if flag 'false'

5.7 The WHILE loop
The structure of the WHILE loop is slightly more complex than the UNTIL loop and
takes the general form as follows:

BEGIN condition WHILE

FORTH words ...

REPEAT

If the 'condition' is 'true' then the 'FORTH words' will be executed and the loop
repeats (back to BEGIN), otherwise if the 'condition' is 'false' then the 'FORTH
words' are not executed, and the loops ends. Or, to put it another way, everything
between BEGIN and REPEAT executes repetitively while the condition remains
'true'. Again the condition test must leave a flag on top of the stack which will be
tested by {while}.

The WHILE loop is often interchangeable with the UNTIL loop. We could, for
example, rewrite our {wait} definition using a WHILE loop as follows:

: wait BEGIN KEY 32 = NOT WHILE

(do nothing)

REPEAT ;

noticing that the logic of the condition is reversed - this loop repeats while the key
pressed is not 'space'.

Although the WHILE and UNTIL loops may seem to be almost identical, or even
interchangeable, there is a crucial difference between them, namely, that the
UNTIL loop always executes at least once, whereas the WHILE loop may not

47

execute at all - if the condition test turns out to be false first time. It is this difference
which enables the FORTH programmer to decide which looping structure is
appropriate to a given problem.

5.8 FORTH Structures in action
The order of execution of the words in a colon definition is strictly determined by
the control structures within the definition. Furthermore, because we cannot have
incomplete control structures (IF without THEN, DO without LOOP etc.), or
GOTO, it is usually easy to determine the order of events within a colon definition
at run-time. Let us take, as an example, the following definition:

: BARPRINT DUP 0> IF

0 DO *" LOOP (true words)

ELSE

DROP

THEN

CR ;

There are only two major paths through {barprint}; either the true words or the
false words of the IF structure will be executed, but never both. Figure 5.7
illustrates these two paths.

repeat at least once

pathl: DUP 0> (IF) 0 (DO) CR ;

path2: DUP 0> (IF) DROP CR ;

Figure 5.7 The order of events within a colon definition

The control structure words are not shown in figure 5.7 except where they affect the
stack at run-time (and the word is shown bracketed). Two important things to
notice are that execution always starts with the first word in the definition, Cdup> in
the case above, and always ends with the terminating semi-colon. If Cbarprintj is
included in another definition, for example:

: BARTEST 11 -10 DO I BARPRINT LOOP ;

when the word {barprint} is 'called' during the execution of (bartest), either pathl
or path2 of figure 5.7 executes, but it is the final semi-colon that 'returns' execution
back to (BARTEST}.4

In this way, a complex program consisting of many 'levels' of colon definition still
executes in an orderly and predictable manner. Providing that individual colon
definitions are kept simple, making sure that a FORTH program executes in the
right order presents no great problem. Simplicity is the key; FORTH programmers
generally agree that a colon definition should never contain more than 3 or 4 control
structures.

There are occasions when we do have to 'break out' of a word during execution. We
might, for example, encounter an irrecoverable error that makes continued
execution impossible. FORTH provides two words, (abort} and (QUIT}, both of
which will halt execution and return control to the keyboard, (abort} clears all
stacks and usually prints a message; (OUIT} leaves the normal stack intact and

'Chapter 9.5 will explain this mechanism in more detail.

48

prints no message. As an example, we could redefine the division operator {/} to
check for division by zero, as follows:

: / DUP (duplicate the divisor)

IF (if non zero)

/ (perform the division)

ELSE

Division by zero " ABORT

THEN ;

This new division operator may be incorporated into subsequent definitions and
will behave just like the old {/}, except that whenever division by zero is attempted
the message "Division by zero" is printed, and execution is halted. We could have
used the word {quit} instead of {abort}, in which case the normal stack remains
intact and may be examined, for debugging purposes, when the division by zero
error occurs.

5.9 Summary and Exercises
The following new words have been introduced in this chapter:

Control Structures:

DO (n 1 n2 -*)

Used in a colon definition in the form:

do .. loop or,

DO .. +L00P

DO sets up a definite loop with initial index value n2 and limit value nl.

LOOP (-»)

Increment the DO .. LOOP index by +1 and terminate the loop when the
index equals (or is greater than) the limit value.

+ LOOP (n -*) "plus—loop"

Add n to the DO .. +LOOP index using signed addition {+}, and compare the
new index with the limit value. Terminate the loop if the index is equal to or
greater than the limit, for n positive; or if the index is less than the limit, for n
negative.

I (-► n)

When used in the form DO .. I.. LOOP copies the index value onto the stack.

J (-» n)

When used in the form DO .. DO .. J.. LOOP .. LOOP copies the index value
of the outer loop onto the stack.

LEAVE (->)

Set the limit value of a DO loop equal to the current index value so that the
loop is terminated at the next LOOP or +LOOP. The index remains
unchanged and any words between LEAVE and LOOP or +LOOP are
executed normally.

BEGIN (-»)

49

Marks the start of an UNTIL loop or a WHILE loop, and is used in a colon
definition in the form,

BEGIN ... flag UNTIL Or,

BEGIN ... f lag WHILE ... REPEAT

UNTIL (f lag ->)

In a BEGIN .. UNTIL loop, if the flag is false then execution loops back to
BEGIN. If the flag is true the loop is terminated.

WHILE (flag-.)

In a BEGIN .. WHILE .. REPEAT loop, if the flag is true then execution
continues through to REPEAT and then loops back to BEGIN. If the flag is
false the loop terminates and execution continues after REPEAT.

repeat ()

Mark the end of a BEGIN .. WHILE .. REPEAT loop as above.

Input:

KEY (-> char)

Wait for a key press and leave the ASCII value of the character on the stack.

Miscellaneous:

ABORT (n 1 n2 _->)

Clear the normal and return stacks and return control to the keyboard.

QUIT (->)

Clear the return stack and return control to the keyboard.

Exercises -

1) Define a word which will have the effect of printing a block of stars, so that
we could type:

4 stars

ok

2) Write a program to add up all of the integers between a start value and an end
value inclusive, where the start and end values are supplied as follows:

1 10 suma 11

3) Write a program to print a 'countdown' from a specified start value, to zero,
with a delay between each count of approximately one second. Print an
appropriate message at zero, for example, 'We have liftoff!

50

4) What will be printed out by the following loops:

: exl 16 0 DO I . 3 +L00P ;

: ex2 0 10 DO I . -1 +L00P ;

: ex3 5 BEGIN DUP . 5 + DUP 100 > UNTIL . ;

5) Write A program to print selectively only those numbers, between specified
start and end values, which are exactly divisible by a third value, also
specified at runtime.

6) Devise a {dump} program which will print out the contents of memory,
starting at a specified address, in blocks of 8 lines by 8 bytes. At the end of
each block halt and wait for a key to be pressed, if the key is 'space' then
continue, otherwise exit the program. (Hint: you will need two nested DO
loops inside an UNTIL loop.)

51

52

6
Editing, Saving and Loading

FORTH programs

We have now reached the stage in the book of having
covered sufficient FORTH words to be able to start constructing programs of a
reasonable and useful complexity. But clearly the method of direct entry (into the
keyboard) used for trying out examples so far is inappropriate for complex
programs under development. We really need to be able to edit, save and load
programs onto disk or cassette in 'source' form (that is, as they would be typed in
directly). FORTH does provide these facilities but in a novel way in which the disk
or cassette acts like an extension of memory. Computer scientists call this 'virtual
memory' and in practical terms it means that FORTH program 'source' can be very
large, without taking up much of the system memory.

6.1 The FORTH LOADing Concept
FORTH divides disk or cassette into 'blocks' of 1024 characters each. Blocks are
fetched one at a time into 'block buffers' in RAM, for editing or execution. Programs
may, however, extend over any number of blocks, and a block can contain
commands to load successive blocks so that the FORTH programmer need not load
each block separately.

'block buffer'

Figure 6.1 The FORTH LOADing Concept

Figure 6.1 illustrates this concept by supposing that a large FORTH program has
been edited into blocks 100 to 105 inclusive. To load the whole program (which will
almost certainly consist of a 'vocabulary' of colon definitions), the FORTH
programmer may simply type:

100 LOAD

53

The word { LOAD} means 'fetch the block specified by the number on top of the stack
from disk or cassette into a block buffer, then pass it into the FORTH interpreter as
if it had been typed in directly'. Any colon definitions in the block will thus be
compiled and appended to the dictionary as per normal. If the phrase {101 LOAD}

has been included at the end of block 100, then, instead of returning control to the
keyboard, block 101 will be loaded immediately after block 100, using the same
block buffer. Any number of blocks may be 'chained' together in this way, so that a
large program can be loaded all in one go, without taking up more than 1 kbyte of
system memory (for the block buffer). Figure 6.1 shows block 103 in the process of
being loaded.

The FORTH editor treats each 'block' as 16 lines by 64 characters - a convenient
'screen' full - and so our 6 block example of Figure 6.1 could accommodate a 96 line
FORTH program. (Some FORTH systems refer to a block as a 'screen' but the two
terms are generally interchangeable.) There are no special rules about what a block
can contain. Anything you can type in directly (which is everything!), may be
edited into a disk or cassette block. Our complete program in blocks 100 to 105 will
probably consist of a collection of colon definitions, variable and constant
definitions, lots of comment, and some FORTH intended to be executed directly
during LOADing.

Here is what a single block might look like when LISTed. (The word {list} 'fetches'
a block and then lists it as 16 numbered lines on the terminal.)

0
1
2
3
4
5

6
7

8
9

10
11
12
13

14

15

(The Complete FORTH,

: Squares

10 0 DO

II*.

LOOP ;

Squares

: Times tab le

CR 11 1 DO

11 1 DO

Chapter five examples)

(print 0 to 9 squared)

(try out Squares)

(print a ten times table

J I * .

LOOP

CR

LOOP ;

Timestable (try out Timestable)

)

Line 0, by convention, consists of comments describing the content of the block.
The two colon definitions of the block, on lines 2-5 and 8-14, are suitably indented
for readability. Finally lines 6 and 15 will cause the newly defined words to be
executed, for testing, again at LOAD time.

Each line in the block will be loaded into FORTH strictly in order from line 0
through to 15. This of course means that the content of a block - or series of blocks -
cannot be in any order, but must follow the same rules that apply when typing in
directly. In particular a newly defined word cannot be referred to until after its
definition.

Notice that everything in the block could be typed in directly, but obviously there
are great advantages in editing lengthy definitions onto disk or cassette blocks,
since if there are errors in the definitions, as there are in any program under

54

development, a simple 'edit' and reLOAD will allow us to rapidly try the definition

again without tedious retyping. Another good reason for using blocks for program

development is that a well commented and laid out block is self-documenting, and

readable by other FORTH programmers.

Most systems actually use more than one block buffer (normally two or three), and

FORTH automatically decides which to use for a particular LOAD or LIST on a

'least recently accessed' basis. To illustrate what this means let us suppose that we

are developing a set of colon definitions in block 100 and FORTH has assigned

block 100 to block buffer number i (in a system with two block buffers, i and ii).

Should we then wish to LIST block 95 for reference, FORTH will fetch the block into

buffer number ii, since buffer number i has been more recently accessed. Having

examined block 95, we can resume editing block 100 by typing {100 list}, and block

100 will not have to be re-read from disk or cassette since it is still contained in

buffer i. In this way, disk or cassette transfers are kept to a minimum while

developing one particular block.

If, in the example above: we had typed {96 list), to examine block 96 instead of

typing {100 LIST} to resume editing block 100, then buffer i would have been used

for block 96, since buffer ii had been more recently used. But, before fetching block

96 FORTH will automatically save the contents of buffer i into block 100 on disk or

cassette, so that the newly edited block 100 will not be lost. Thus, the FORTH

programmer does not have to explicitly 'save' the block.

In pratice there are occasions when we do need to 'save' any newly edited blocks,

such as before changing disks, or switching the power off, or just as a safety

precaution before trying out some new (and hazardous) definitions! Accordingly

FORTH does provide a 'SAVE-BUFFERS' command, and I shall examine this and

other details later in the chapter.

6.2 The Editor
The FORTH-79 standard does not specify an editor vocabulary and, as a result,

editors from different FORTH implementations often differ considerably. I will

outline here a set of 'typical' editor words, (from a FORTH Implementation Group

model). Readers with FORTH systems are recommended to consult their system

documentation while reading this section, for more detailed information on their

own editor words.

On many FORTH systems the editor vocabulary, (that is, the collection of editing

words), is not normally accessible without either first LOADing a set of disk or

cassette blocks containing the editor, or on some systems simply typing EDITOR.

Again, your system documentation should tell you how to invoke the editor

vocabulary if it is not present already.

Suppose that we would like to enter some newly devised FORTH into a block. First,

we must locate an empty block, or one whose contents are no longer needed. (On

some cassette based systems this is not necessary.) The best way to check that the

block is suitable, and prepare it for editing, is to LIST the block, as follows:

100 LIST

0
1

55

2

3

4

5
6
7
8
9

10

11
12

13

n
15

ok

Usually the first thing we want to do is to enter new text into the block. This is best

achieved line by line using the editing word {P>, for Put. Typing a line number,

from 0 to 15, followed by {p>, and up to 64 characters of text terminated by the

'return' key will have the effect of Putting the text into the specified line. (If the line

did previously contain anything this will be overwritten by the new text.) For

example:

0 P (Test block) ok

2 P : Squares (print 0 to 9 squared) ok

3 P 10 0 DO ok

4 P I I * . ok

5 P LOOP ; ok

Having typed in a few lines, we will probably want to list the block again to make

sure they have gone in correctly. We could type -C100 list>, but it is easier to use the

editor word {L>, which has the effect of listing the block buffer currently in use:

L

0 (Test block)

1

2 : Squares (print 0 to 9 squared)

3 10 0 DO

4 II*.

5 LOOP ;

6
7
8
9

10
11
12
13

74

15

ok

If we want to look at just a single line in the buffer, the word {T>, for Type, is more

convenient. For example:

2 T

2 : Squares (print 0 to 9 squared)

ok

56

To insert a new line into the buffer between two old lines requires two commands.

First of all <s> which Spreads the text in the buffer, inserting a blank line, and then

{P> to Put the new line into the buffer. For example:

2 S ok

2 P Squares (try out Squares) ok

will move the definition of Squares to start on line 3. The reverse operation, of

Deleting a line and moving up all lower lines to close the gap, is accomplished by

the word <d>.

Finally, we could move a complete line from one place in the buffer to another, by

using a single line scatchpad called the PAD. The Delete command Cd>, in fact,

places the deleted line into the PAD, which may then be copied out of the PAD

onto another line of the buffer using the Insert command Cl}, which Spreads the

buffer, and then Inserts the text from the PAD into the new blank line. For

example, to move the new line 2 into line 8, we would type:

2 D ok

8 I ok

and a full Listing of the block now appears:

L

0 (Test block)

1

2 : Squares

3 10 0 DO

4 II*.

5 LOOP ;

6
7

8 Squares

9

10
11
12
13

H
15

ok

Here is a summary of the editing words covered so far:

P text (n ->) Put text (terminated by 'return') into tine n.

L (-») List the block buffer currently being edited.

T (n ->) Type line n. Also copy it into the PAD.

S (n —») Spread the buffer so that line n becomes blank.

D (n ->) Copy line n into the PAD then move up the lower

lines to close the gap.

I (n->) Spread the buffer then insert the text from the

PAD into the new line n.

PAD (-» addr) Leave the start address of the PAD.

(FORTH-79 word).

These editing words are sufficient to allow FORTH to be entered and edited on a

line by line basis. The FIG FORTH model editor does specify a number of additional

words which allow more sophisticated editing including, for example, the

(print 0 to 9 squared)

(try out Squares)

57

alteration of 'strings' within lines without having to retype the whole line.

Let us assume that we are ready to test the new FORTH in block 100. To load the

block type:

100 LOAD

0 1 4 9 16 25 36 49 64 81 ok

and {Squares} has compiled correctly (lines 2-5), and executed correctly as shown

by its output.1

Suppose, on the other hand, that we had mistyped one of the words in the

definition for {Squares}, 'LLOP' instead of 'LOOP' in line 5:

100 LOAD

LLOP ?

FORTH will print the offending word, together with the error message '?' meaning

'word not found in dictionary'. The LOAD is then aborted and control returned to

the keyboard, ready for us to edit and reLOAD the block.

As soon as the block is completed and tested we will want to save it back onto disk

or cassette. As I indicated earlier, this will happen automatically should we go on to

LIST and edit further blocks; as soon as the buffer occupied by our completed block

100 is needed for another block, then block 100 will be written back onto disk or

cassette. Alternatively, if we have finished editing and testing we can save the

completed block 100 by typing simply:

SAVE-BUFFERS

Newcomers to FORTE) are recommended to use this command regularly until they

become familiar with 'block handling'!

6.3 More BLOCK handling
The three operations LIST, LOAD and SAVE-BUFFERS, together with an editor

vocabulary, are normally all that is required for the creation of applications

programs on disk or cassette. FORTH does provide an additional set of block

handling operations which are useful for setting up block input-output under

program control so that, for example, a program may use disk or cassette 'data'

blocks. This section will cover these techniques and is not essential reading for the

newcomer to FORTH.

The word {BLOCK} is the basic block fetch operation (used to define LIST and

LOAD); its effect is to fetch the specified block into the least recently accessed block

buffer, if it is not already in memory, and to save the old contents of the block

buffer first, if necessary, {block} does not process the block in any way after

fetching it, but leaves the start address of the block buffer on the stack:

BLOCK (n -> addr)

This address may then be used to locate an item of data in the block, to extract the

‘On some cassette based svstems the LOAD command has the effect of always
reading the block off cassette regardless of whether the block is already in a buffer

or not. If this is the case, an alternative command*is usually provided to load the

block already in memory (ENTER or EXEC are two examples).

58

data, or modify it. As an example of the use of {block}, here is a definition for an

{index} word, to print line zero of each of a set of specified blocks:

: INDEX

1+ SWAP DO

I BLOCK

64 0 DO

DUP Ca EMIT 1+

LOOP

DROP CR

LOOP ;

To index blocks 100 to 105 inclusive, type:

100 105 INDEX

The definition for {INDEX} uses the word {EMIT} which will be covered in detail in

chapter 7. The important thing to notice here is the very simple way in which a

block may be fetched, and data extracted from it.

The {BLOCK} operation can equally easily be used to define operations to 'save' or

'load' numerical data as a disk or cassette block, for example:

CREATE data 80 ALLOT (create a 40 element array)

: savedata

data

(save ’data1 in block 150)

(address of data array)

150 BLOCK (fetch block)

40 MOVE (move data into block)

UPDATE ; (mark as updated)

: loaddata

150 BLOCK

(load 'data1 from block 150

(fetch block)

data (address of data array)

40 MOVE ; (move data from block)

The numerical data are stored in the block in 'binary' form, which is an efficient and

compact use of storage. (We could fit 512 single length numbers into one block.) It

does mean, however, that LISTing the block will not produce an intelligible output.

The word {MOVE} is used to transfer the data to and from the block buffer; the stack

description of {MOVE} is as follows:

MOVE (addrl addr2 n -»)

where n (16 bit) numbers stored in memory starting at addrl are copied into

memory at addr2 onward. The move starts by copying the number at addrl into

addr2, then addrl+2 to addr2+2, and so on.

Notice the use of the word {update} which has the effect of 'marking' the block

buffer containing block 150 as 'updated'. This ensures that on the next LIST,

LOAD, BLOCK or SAVE-BUFFERS operation which needs to use the same block

buffer, the old contents will first be saved back into block 150 on disk or cassette.

Whenever a block is edited it is automatically marked as 'updated', but when we

alter a block under program control then we must explicitly update the block, hence

the word {update}.

If we should need to initialise a block, then the word {buffer} is more useful than

{block}, {buffer} has the effect of simply assigning the least recently accessed

buffer to the specified block, saving its old contents if UPDATEd, but not fetching

(Loop through blocks)

(fetch a block)

(print line 0)

(tidy stack, new line)

59

the new block into the buffer. Its stack effect is similar to {block}:

BUFFER (n -> addr)

As an example here is a definition of a word to {clear} a block to contain all spaces:

: CLEAR
BUFFER (assign a buffer)

1024 32 FILL (fill it with spaces)

UPDATE ; (and mark as updated)

To clear, for example, block 105, type:

105 CLEAR

and when the buffer contents are written out to disk or cassette (by SAVE-

BUFFERS, for example), the old block 105 will be overwritten by the new empty

block. (See chapter 7 for an explanation of {fill}).

To conclude this section, three more words should be mentioned, {SCR}, {blk} and

{EMPTY-BUFFERS}.

{SCR} is a system variable containing the block number of the most recently LISTed

block, and is useful when devising new editing words. {BLK} is another system

variable, and contains the block number of the block currently being interpreted by

LOAD. The FORTH interpreter (and the word {query} covered in chapter 7), uses

{blk} to determine where the input stream should come from; if BLK is zero, then

the input is from the keyboard, if BLK is non-zero, then input is from a

block-buffer.

{EMPTY-BUFFERS} has the effect of initialising all of the block buffers by marking them

as 'empty', so that none of the buffer contents will be written out to mass storage,

even if UPDATEd. This is useful if you should accidentally corrupt the contents of a

buffer (while editing, for example), and you do not want to overwrite the old disk

or cassette block. Simply type {empty-buffers}, and then LIST the block, to restore

it as it was.

6.4 Vocabulary Management
As we have seen already a complete program (or 'application' to use FORTH

terminology) generally consists of a collection of colon definitions, or to put it more

precisely, a 'vocabulary' of new 'words'. When a vocabulary is LOADed, the words

are compiled and added into the dictionary in such a way that the new words are

'linked' into the existing dictionary. Figure 6.2 illustrates this linkage by showing

two new dictionary entries; {ONE} and {two}.

existing FORTH

dictiona ry

ONE

TWO

\J
t)
(—start dictionary searc

free space

h

Figure 6.2 Dictionary Linkage

All dictionary searches will start with the most recently defined word, {TWO}, and

work backwards. If the word in the input stream is not one of the newly defined

60

words, then the search will continue in the standard FORTH dictionary; the linkage

ensures that new words, and old, may be freely intermixed in the input stream.

Any number of vocabularies may be LOADed and linked in this way, and a

dictionary search will work through each vocabulary, in reverse order of LOADing,

eventually working back into the standard dictionary. While this structure may be

satisfactory, FORTH does provide a more elegant way of grouping vocabularies so

that each is essentially separate but still easily accessible. The words, {vocabulary}

and {definitions} will achieve this, as shown by the following examples:

0 (Test vocabulary management)

1 VOCABULARY FRENCH IMMEDIATE

2 FRENCH DEFINITIONS

3 : ONE un " ;

4 : TWO deux " ;

5

6 FORTH DEFINITIONS

7 VOCABULARY GERMAN IMMEDIATE

8 GERMAN DEFINITIONS

9 : ONE ein " ;

10 : TWO zwei " ;

Here we have defined two separate vocabularies, named {french} and {german},

both linked back into the FORTH vocabulary. The total dictionary linkage for this is

shown in figure 6.3.

Figure 6.3 A Two Vocabulary link structure

The pointers A, B and C in figure 6.3 illustrate that there are three possible 'starts'

for a dictionary search. We can start at point A, and miss out the two new

vocabularies completely by writing:

FORTH ok

ONE ONE ?

To start at point B, and search FRENCH and then FORTH, write:

FRENCH ok

ONE un ok

or to start at point C, and search GERMAN and then FORTH, write:

GERMAN ok

TWO zuei ok

61

As illustrated here, different vocabularies can use the same name for different

definitions. Each version of the same word is accessible simply by preceding the

word by the name of its vocabulary.

In FORTH terminology the vocabulary in which a dictionary search will start is

known as the 'context' vocabulary, and is determined by the value of the system

variable {context}. Words defined by the defining word {vocabulary} (such as

{FRENCH} or {GERMAN}), will have the effect when executed, of setting the value of

{CONTEXT} to the corresponding pointer (B or C). The word {forth} sets the FORTH

vocabulary as the context vocabulary.

Notice also the use of the word {immediate}, following the definitions of {french}

and {GERMAN} on lines 1 and 7 of the example block above. This ensures that the

words {french} and {GERMAN} will be always be executed, even when they occur

within a colon definition; a necessary facility as we shall see shortly. (For a full

explanation of {immediate} see chapter 9.5.)

A second system variable, {current}, determines the vocabulary into which new

definitions will be placed; the word {definitions} sets {current} equal to

{CONTEXT}. Thus:

FORTH definitions

means that new definitions will be linked into point A in figure 6.3, and become

part of the FORTH vocabulary. The new definition may still refer to other

vocabularies, by altering the context during the definition, as follows:

FORTH DEFINITIONS ok

: TWO.TRANSLATE

FRENCH TWO .11 = "

GERMAN TWO ; ok

FORTH TWO-TRANSLATE deux = zuei ok

The words {FRENCH} and {GERMAN} are executed at compilation time, (and produce

no compiled code), they simply alter the context so that the first {two} will be found

in the FRENCH vocabulary, and the second {two} in the GERMAN vocabulary.

6.5 Summary
The following new FORTH-79 words have been introduced in this chapter:

Mass storage input-output:

LIST (n ->)

List the contents of block n. Set the variable SCR to n.

LOAD (n ->)

Interpret block n by making it the input stream. (Preserve the pointers >IN

and BLK into the present input stream so that it will be resumed when

interpretation of the block ends.)

SCR C -» addr) "s—c—r"

System variable containing the number of the block most recently listed.

BLOCK (n -> addr)

62

If block n is not already in memory, then fetch it from mass storage into the

block buffer least recently accessed. (Saving the old contents of the block

buffer first, if they had been modified i.e. UPDATEd.) Then leave the start

address of the block buffer containing block n.

update (->)

Mark the most recently referenced block buffer as having been modified so

that its contents will automatically be saved onto mass storage should the

buffer be needed (by LIST, LOAD or BLOCK) for a different block, or upon

execution of SAVE-BUFFERS.

BUFFER (n -> addr)

Assign the least recently accessed block buffer to block n, first saving its old

contents if they had been marked as UPDATEd. Do not fetch block n into the

buffer, but leave the start address of the buffer.

SAVE-BUFFERS (-»)

Save all block buffers that have been modified (i.e. UPDATEd).

EMPTY-BUFFERS (->)

Mark all block buffers as empty. Do not save any even if they are marked as

UPDATEd.

Miscellaneous:

PAD (—> add r)

Leave the start address of a general purpose 'scratch-pad' used to hold

character strings for intermediate processing. The PAD has space for at least

64 characters (at addr to addr+63).

BLK (-» addr) "b-L-k"

System variable containing the number of the block currently being

interpreted by LOAD as the input stream. If BLK is zero then input is from

the keyboard.

Memory:

MOVE (addrl addr2 n -*)

Copy n 16 bit values starting at addrl into memory starting at addr2,

proceeding toward high memory. If n is zero or negative do nothing.

Vocabulary Management:

VOCABULARY (->)

A defining word used in the form:

VOCABULARY <name>

to create (in the CURRENT vocabulary) a new vocabulary called <name>.

63

When <name> is later executed it will become the CONTEXT vocabulary, for

dictionary searches, and using the word DEFINITIONS it may also become

the CURRENT vocabulary for new definitions. All new vocabularies

eventually link back to the FORTH vocabulary.

CONTEXT (addr)

A system variable specifying the vocabulary in which dictionary searches will
start during interpretation of the input stream.

CURRENT (-» addr)

A system variable specifying the vocabulary to which newly defined words

will be appended.

FORTH (->)

The name of the primary vocabulary. The FORTH vocabulary is normally

both the CONTEXT and CURRENT vocabulary unless changed using

VOCABULARY and DEFINITIONS. Executing FORTH restores FORTH as

the CONTEXT vocabulary.

DEFINITIONS (->)

Sets CURRENT equal to CONTEXT so that subsequent definitions will be

appended to the vocabulary previously selected as CONTEXT.

7
Number and String
Input and Output

We have already used the "dot" and "dot-quote"
operations for number and text output respectively, and for number input we have
relied on the fact that numbers in the input stream are automatically pushed onto
the stack. FORTH does, however, provide an extensive additional set of
input-output operations which are used in combination, rather than individually,
to develop new input-output words for virtually any application.

In an attempt to make the text of this (and the following) chapters as uncluttered as
possible, many of the examples are presented without detailed (stack) analysis. All
examples are, however, amenable to analysis using the stack notation of chapter
3.6, if the reader should seek further clarification.

7.1 Character input-output, the basics
The simplest of the character output operations is the word {emit} which will print
the character whose ASCII value is on top of the stack.1

For example:

65 EMIT Aok

prints the single character "A", since 65 is the ASCII value for the character "A" (in
decimal). To print a string of characters using {emit} just emit each character in
turn, for example:

89 EMIT 69 EMIT 83 EMIT YESok

To avoid having to look up the ASCII value of each character, use the reverse
operation {KEY}, which waits until a key has been pressed and then leaves its value
on top of the stack:

KEY ok (After hitting 'return' press 'Y')

. 89 ok

The string printing word "dot-quote” {."} is much easier to use than {EMIT} for
character strings:

YES" YESok

{EMIT} is more often used for printing control-characters, which cannot be included
inside a dot-quote string. Three examples of these are already part of the standard
vocabulary; {CR}, {SPACE} and {SPACES}:

: CR 13 EMIT 10 EMIT ; (print carriage return, tine feed)

: SPACE 32 EMIT ; (print one space)

: SPACES 0 60 SPACE LOOP ; (print n spaces)

These definitions illustrate also that much of the standard vocabulary is itself
defined in FORTH! Further special printing operations can easily be defined like
this if needed, for example:

'A full description of ASCII is given in the glossary of i-ORTH terminology.

65

: TAB 9 EMIT ; ok

: CLRS 12 EMIT ; ok

CLRS TAB New page" CR

(horizonta L tab)

(clear screen)

Neu page

ok

As a final example of the use of both -CEMiT> and {KEY}, suppose that we need to
input a fixed length string into memory, from the keyboard, and later print the
string. The best way to reserve space in memory to hold the string, is to {CREATE}2 a
new dictionary entry and {ALLOT} space in it, as described in chapter 3.5:

CREATE STRING 6 ALLOT ok (6 bytes of space)

The newly defined word {STRING} will leave the address of the start of the allotted
space on top of the stack and can be used to define {getstr} and {printstr} as
follows:

: GETSTR CR ." ?" (print a prompt)

STRING (address onto stack)

6 0 DO (loop thru characters

KEY (input a key)

DUP EMIT (echo it)

OVER C! (and store it)

1 + (increment address

LOOP

DROP ; ok (tidy up stack)

: PRINTSTR

STRING (address onto stack)

6 0 DO (loop thru characters

DUP CS EMIT (fetch and print)

1 + (increment address

LOOP

DROP ; ok (tidy up stack)

GETSTR (test GETSTR)

PABCDEFoAc

PRINTSTR ABCDEFok (print STRING)

{GETSTR} has two limitations; one is that all six characters must be typed in (and not
terminated by the 'return' key); the other is that the 'backspace' key cannot be used
to correct typing errors. These limitations could be overcome with a more
sophisticated definition for {getstr}, but since FORTH already has a number of
powerful 'buffered' string input operations it is more sensible to use one of these.

7.2 String input-output 1
In general the FORTH programmer has two options available for string input to
programs; one is to take the string input from the original input stream (for which
BASIC has no equivalent); the other is to halt the program and wait for a line of
input to be typed into the keyboard (as in {getstr} above, or the BASIC 'INPUT'
statement). The first of these two options uses the important operation {WORD} and
is described in this section. Section 7.3 covers the second.

2On non FORTH-79 systems you mav have to type <0 variable string 4 allot) to,

' /V achieve the same effect.

& 66

{WORDJ may only be used inside a colon definition (I shall explain why shortly) and
the following example illustrates its use:

: PRINTNEXT 32 WORD COUNT TYPE ; ok

PRINTNEXT sillyexample siltyexampleok

{PRINTNEXT} has the rather pointless effect of printing the word typed in after it, but
it does illustrate a number of interesting new operations.

{WORD} has the effect, when executed, of copying characters from the input stream
into a 'word buffer', up to a delimiter character. Additionally, the number of
characters copied is left at the head of the word buffer. Figure 7.1 illustrates this
diagrammatically.

input stream-* PRINTNEXT si l lyexamp le

current input pointer -f t—input pointer

before {WORD} executes after execution

contents of word buffer after {WORD} has executed,

memory ->

12 s i i t y e X a m p L e

f— start address of word buffer

Figure 7.1 {word} in Action

{WORD} needs the delimiter character specified on the stack before execution, and
leaves the start address of the word buffer on top of the stack after execution:

WORD (char -> addr)3

The effect of {32 word} in the example above is therefore to copy up to the next
'space' character. The next word in the example {COUNT} simply fetches the count
byte pointed to by the address on top of the stack, and increments the address so
that it points to the actual start of the string. Both values are left on the stack:

COUNT (addr -> addr+1 n)

The stack is now ready for the word {type} which will print the string whose actual
start address and character count are specified on the stack:

TYPE (addr n ->)

The reason that {word} cannot be used outside a colon definition is that FORTH
itself uses the operation {word} and, as a result, the word buffer, while processing a
line of input. Typing:

32 WORD si llyword COUNT TYPE

will not have the expected effect because by the time {type} is being executed, the
word in the*word buffer is not "sillyword" (it is, in fact "TYPE"!).

Having established how {WORD} works We can devise a rather more useful operation
{putstr}, to copy the next word in the input stream into a special string buffer
which we define ourselves:

'Some non FORTH-74 systems have a slightly different stack effect for twotto), in

which the word buffer address is not left on the stack. If vour system is one of these
then you can probably replace (bORD) in the examples in this section by the phrase
(word here), but check vour documentation first!

67

(plenty of room) CREATE STRING 40 ALLOT ok

: PUTSTR

STRING 40 32 FILL

32 WORD COUNT

STRING SWAP CMOVE ; ok

(erase STRING)

(get word buffer)

(copy into STRING)

Two new words are introduced in this definition, {FILL) and {CMOVE}. {FILL}

provides the useful function of filling a block of memory, byte by byte, with the
same value. Its stack description is:

FILL (addr n byte ->)

and its action is to fill the 'n' bytes starting at 'addr' with the value 'byte'. The
phrase {string 40 32 FILL} has the effect, therefore, of filling the 40 bytes starting at
the address returned by {string} with the value 32. In other words, the STRING is
filled with spaces.

The word {cmove} is the 'character block move' operation:

CMOVE (addr 1 addr2 n ->)

The 'n' bytes starting at 'addrl' are moved to memory starting at 'addr2'. In the
example above {CMOVE} moves the string placed into the word buffer by {WORD}, into
our own STRING buffer. Of course, once the string has been copied there is no
danger of it being corrupted by the FORTH interpreter, and it does not have to be
processed in the same definition as {word}.

With a definition for {printstr} we may test out {putstr} fully:

: PRINTSTR

STRING 40 -TRAILING TYPE ; ok

PUTSTR teststring ok

PRINTSTR teststringok

{printstr} illustrates another useful string utility operation {-trailing} which has
the effect of reducing the character count on top of the stack by the number of
trailing spaces in the stored string (pointed to by the address second on the stack).
{TYPE} will then only print the characters copied into the string (which must always
be less than 40). A definition of {PRINTSTR} without the word {-TRAILING} would
always print all 40 characters of the string.

Before leaving this section, two additional words should be mentioned which
might be useful when using {WORD}: {HERE} which returns the address of the next
available dictionary location (in most systems this is the same as the address
returned by {WORD}, the word buffer moves up as the dictionary grows); {>IN} is a
system variable containing the character offset into the input buffer (the input
pointer shown in figure 7.1). {word} advances the value of >IN while scanning the
input stream.

7.3 String input-output 2
The second method of achieving string input in FORTH is to use either the word
{expect}, or the word {QUERY}. Both have the effect of halting the program and
waiting for a line of input to be typed into the keyboard, the only difference
between the two is where the input is stored.

The more general of the two is {expect}, which has the following stack description:

68

EXPECT (addr n)

{EXPECT} accepts characters from the keyboard into memory starting at 'addr , until

either 'n' characters have been typed, or the 'return' key is pressed (whichever

comes first). A very useful word {instr} can be developed using {expect}, to input

characters into our STRING buffer, from the keyboard:

: INSTR
STRING 40 32 FILL (clear string)
Cr."7" (print prompt)

STRING 40 EXPECT ; ok (expect up to 40 chars)

INSTR
?This is a typed in line ok

PRINTSTR This is a typed in Lineok

The operation {QUERY} is identical in action to {EXPECT}, except that it expects up to
80 characters, and places them in the FORTH terminal input buffer. {QUERY} is, in
fact, another word used by the interpreter; it is the word that is executing whenever
you are inputting normally to a FORTH system. The word {QUERY} is in many ways
more useful to the FORTH programmer than {EXPECT}, because {QUERY} may be
used together with {WORD} to 'parse' the typed input (that is, split it up into separate

words).

Suppose, for example, that we are writing a program involving a 'question and
answer' dialogue between computer and user (as employed in games programs),
and the user must type in three replies on one line, each separated by commas.
Using the powerful combination of {QUERY} and {word}, we may devise a definition
to achieve this, and place each of the three replies in a separate 'string', as follows:

CREATE 1 reply 10 ALLOT ok < define reply strings)

CREATE 2reply 10 ALLOT ok

CREATE 3reply 10 ALLOT ok

: GETREPLIES

1 rep ly 10 32 FILL (clear each string buffer)

2reply 10 32 FILL

3rep ly 10 32 FILL

CR ? " (newli ne and prompt)

QUERY (get i nput from user)

44 W0R D (fetch first word)

COUNT 1 rep ly SWAP CM0VE (move into 1 reply)

44 WORD (fetch second word)

COUNT 2reply SWAP CM0VE (move into 2reply)

1 WORD (fetch third word)

COUNT 3 rep ly SWAP CM0VE ; ok (into 3reply)

GETREPLIES

’One,Tv io, Three ok

1 reply 10 TYPE One ok (print each reply)

2reply 10 TYPE Tuo ok

3repLy 10 TYPE Three ok

In practice {GETREPLIES} would be incorporated into other definitions to make up
the whole program. The delimiter character used for the first two replies is 44, the
ASCII value for a comma, but for the third word the delimiter is 1, which has the
effect of causing all of the remaining characters up to the end of the line to be copied

69

by {word}. Notice also that the three different reply strings are given names that
differ in the first character rather than the last. This is as a precaution against some
FORTH systems in which only the first three or four characters are saved in the new
dictionary entry, in which case reply 1, reply2 and reply3 would be indistinguish¬
able.

Two additional features of {QUERY} are worth noting. The first is that since {query}

uses the terminal input buffer, anything previously in the buffer will be
overwritten, including FORTH input. Thus in

GETREPLIES This will not work"

{GETREPLIES} will execute correctly, but anything following it will not execute. The
second is that if {BLK} (described in chapter 6) is non-zero then {QUERY} will attempt
to fetch input from a disk or cassette block. This may be used to advantage should
we require string input from a disk block at run time.

7.4 Number Bases
A feature that is common to all number input-output operations, which we have
not yet exploited, is that the 'base' or 'radix' may be altered from its usual default of
base 10 (decimal). Whenever a number is being input, or output, its base is
determined by the current value of the system variable {BASE}. Radix conversion is
therefore very easy in FORTH, and requires only the definition of words to alter the
value of {BASE}. Two examples are:

DECIMAL ok

: HEX 16 BASE ! ; ok

: BIN 2 BASE ! ; ok

The new words defined above, {HEX} and {BIN}, will have the effect when executed
of altering the radix for number input and output to base 16 (hexadecimal), or base
2 (binary) respectively. Notice the precaution of typing DECIMAL before compiling
HEX and BIN, to ensure that the numbers 16 and 2 really are treated as decimal
numbers, {decimal} is a pre-defined word which sets the value of {BASE} to its
normal value of 10, for decimal number input and output.

Using {HEX} and {bin} we may perform radix conversion, for example:

DECIMAL ok (check we're in decimal)

16 HEX . 10 ok (16 decimal = 10 hex)

3FF DECIMAL . 1023 ok (3FF hex = 1023 decimal)

9 BIN . 1001 ok (9 decimal = 1001 binary)

10101 DECIMAL . 21 ok (10101 binary = 21 decimal)

The unsigned print operation {U.} is more useful than {.} for the conversion of
negative numbers:

-1 HEX U. FFFF ok (-1 decimal = FFFF hex)

FFFF DECIMAL U. 65535 ok

The last example is perfectly correct, since the signed number -1, and the unsigned
number 65535 (decimal) are both represented internally by the same 16 bit number!

It is not unusual, while using different number bases, to lose track of exactly which

70

base you are in. Unfortunately, typing:

BASE a . 10 ok

does not help at all, because it will always produce the result 10 whatever base we

happen to be in! In HEX, for example, BASE equals 16 (decimal), but this will be

printed as 10 (hexadecimal). We can overcome this problem with a special

definition:

: ?BASE

BASE a

DUP

DECIMAL .

BASE !

; ok

which may be used at any

HEX ?BASE 16 ok

BIN ?BASE 2 ok

DECIMAL 7BASE 10 ok

A novel, but often very useful, feature of the unlimited range of number bases in

FORTH, is that short strings can be treated as numbers, in base 36. Any string from

"A" to "ZZZ" can be represented as an unsigned single length number in base 36,

which means that 1, 2 or 3 character string comparisons could be performed by

ordinary arithmetic operations. If we go to double precision, then the useful range

extends to 6 character strings. As an example, here is an array of short strings

defined as if it were a number array:

DECIMAL ok

: BASE36 36 BASE ! ; ok

BASE36 ok

CREATE DAYS SUN , MON , TUE , WED , THU / FRI , SAT , ok

(fetch current base)

(duplicate it)

(print it in decimal)

(and restore the o Ld base)

time as follows:

DECIMAL ok

: .DAY (print day of

BASE 3 SWAP

2 * DAYS + 3

BASE36 U.

BASE ! ; ok

3 .DAY UED ok

6 .DAY SAT ok

numbered 0-7)

(save current base)

(fetch the day)

(print it)

(restore old base)

week

7.5 Alternative number input
In the majority of FORTH programs number input is achieved using the stack. The

values required by a program are pushed onto the stack before the program is 'run'

(by quoting its name), and the program takes them off the stack during execution.

There are occasions, however, when a more conventional type of number input is

needed, where a program halts and waits for a number to be typed into the

keyboard before continuing. (Like the BASIC 'INPUT' statement, when used for

numerical input.)

Although FORTH does not provide a 'numerical INPUT' type of operation in the

basic dictionary, we can easily define one ourselves using the buffered input of

71

section 7.3, and the word {convert}, {convert} will convert an ASCII string stored
in memory into a double precision number on the stack. All we need to do is get a
line of input from the keyboard into memory, using {expect} or {query}, and then
{CONVERT} the string into a number, as follows:

: INPUT

0 0
CR ?"

QUERY

1 WORD

CONVERT

DROP DROP ; ok

The detailed stack effect of {convert}

(double zero onto stack)

(print a prompt character)

(get a line of input)

(copy all of it to word buffer)

(convert to a number)

(tidy up the stack)

is as follows:

CONVERT (d1 addrl - d2 addr2)

The string whose length byte is pointed to by addrl is converted to a double
precision number, which is added to dl and left on the stack as d2. addr2 contains
the address of the first non-convertible character. The double zero in the definition
for {input} is the initial value dl, and the final {drop drop} clears off addr2, and the
top half of d2 to leave a single precision result on the stack.4 (See chapter 8 for a
detailed description of how double precision numbers are stored on the stack.)

To use {INPUT} simply include it in a program wherever number input from the
keyboard is required. {INPUT} will wait for a number to be typed in (terminated by
'return'), and leave the number on top of the stack:

INPUT < -> n) Input n from the keyboard

Here are some examples of the use of {INPUT}:

INPUT

71234 ok (type in "1234" return)

. 1234 ok (print using "dot")

BASE36 ok

INPUT

7YES ok

U. YES ok

(go into base 36)

(type in "yes" return)

(print using "u-dot")

DECIMAL ok (back into decimal!)

The final example shows that {convert} also uses {base} to determine the base of
the string being converted, altering {BASE} will allow numbers in bases other than
decimal to be {input}.

7.6 Summary

The following new words have been introduced in this chapter:

Character input-output:

EMIT (char—»)

4Some FORTH systems have a slightly different word with the same function
called (number), whose stack effect is (addr—*d). To modify (input) to use (number)

instead of (CONVERT) remove the initial (0 0), and one of the final (drop)s.

72

Print the character whose ASCII value is on the stack.

space (->)

Print a single space.

spaces (n ->)

Print n spaces. Do nothing if n is zero or negative.

TYPE (add r n ->)

Print the n characters stored at addr upwards. Do nothing if n is zero or
negative.

COUNT (addr -* addr+1 n)

Fetch the character count of the string pointed to by addr. Add one to addr to
point to the actual start of the string and leave the address and character
count on the stack in TYPE form. Range of n is 0..255.

-TRAILING (addr nl addr n2) "dash-trailing"

Reduce the character count of the string starting at addr from nl to n2 to
exclude trailing spaces, nl must be positive.

EXPECT (addr n)

Transfer characters from the keyboard into memory starting at addr until
either n has been received or 'return' pressed. Do nothing if n is zero or
negative. One or two nulls (zero bytes) are added to the end of the string in
memory.

QUERY (->)

Transfer characters from the keyboard into the terminal input buffer until
either 80 characters have been received or 'return' pressed. WORD may then
be used to process this text if >IN and BLK are set to zero.

WORD (char -> addr)

Copy characters from the terminal input buffer into the word buffer starting
with the first non-delimiter character until the next delimiter char, or until the
input stream is exhausted. The character count byte is left at the head of the
string, pointed to by addr. If the input stream was empty when WORD is
called, then leave a zero count byte.

Number input-output:

BASE (-► addr)

System variable containing the current number base for all number
input-output operations.

DECIMAL (-►)

Set the input-output number base to ten (decimal).

CONVERT (d1 add r1 -» d2 addr2)

Convert the string starting at addrl + 1 into a double number in the current
base, adding this to dl to leave the result d2. addr2 is the address of the first

73

invalid character (according to the base).

Memory Operations:

CMOVE (addrl addr2 n -*) "c—move"

Move n bytes from addrl upwards to addr2 upwards. Do nothing if n is zero
or negative.

FILL (addr n byte —»)

Fill memory from addr to addr+n with the value byte. Do nothing if n is zero
or negative.

Miscellaneous:

HERE C -* addr)

Leave address of next available dictionary location.

>IN (addr) "to—in"

System variable containing offset into the current input stream.

71

8
Double Precision

and beyond

This chapter describes a number of interesting 'num¬

ber' topics including double and mixed precision arithmetic, and formatted number

printing. The chapter goes on to show how a useful 'fixed point decimal arithmetic'

vocabulary could be developed.

Any references to the FORTH-79 extension word set (i.e. double precision stack

manipulation etc.), are accompanied by definitions for these words for the benefit

of those whose systems do not include them.1

8.1 Double Precision Numbers
In chapter 1, I mentioned that FORTH has the facility for double precision (32 bit)

arithmetic, thereby giving a much extended range of numbers. To be more specific,

signed double precision numbers can have values within the range:

-2,147,483,648 to 2,147,483,647 (decimal)

and unsigned double numbers can have values within the range:

0 to 4,294,967,295 (decimal).

FORTH employs a simple and elegant method for telling the difference between

single and double precision numbers in the input stream; if a decimal point2

appears anywhere in a number, then the number will be interpreted as a double

precision number and either pushed onto the stack, or compiled if it is within a

colon definition. Typing, for example:

DECIMAL ok

1000000. ok

will have the effect of pushing the double precision number 'one million' onto the

stack. To pop the number off the stack and print it we may use the double precision

print operation CD.}3, as follows:

D. 1000000 ok

The decimal point used to tell FORTH that "this is a double number", when

inputting, is not printed by {D.>; although we could use the number formatting

which I describe later in this chapter to include the decimal point, if required.

Further, the decimal point in the input number has no significance beyond simply

indicating that the number should be read as double precision. For example in:

'Note that you can easily check if your system conforms to the FORTH-79
standard, just type (79-standard).

“Some systems will recognise a double number if it contains any of the characters
"I" or

If your FORTH system does not have {D.}, then use the definition at the end of
section 8.4 to define it.

75

-0.010 D. -10 ok

-10. 0. -JO ok

both -0.010 and -10 are interpreted as the double number 'minus ten'. Most

FORTH-79 standard systems do, however, place a count of the number of digits

after the decimal point in a variable {dpl>, so that -0.010 in the example above

would have resulted in DPL=3, and -10. would set DPL=0.1 will show later how to

use this extra information to build fixed point arithmetic operations.

A double precision number takes up two 'cells' of the stack, with the upper 16 bit

half of the number uppermost on the stack. Thus, if we print a double number

using two single number print operations, we will get the following for a small

double number:

100. ok

. 0 ok (print upper half)

. 100 ok (print lower half)

But if we try the same with a large double number the result will not be

meaningful.4 For example:

1000000. ok

. 15 ok

. 16960 ok

The FORTH-79 standard specifies two signed double precision arithmetic opera¬

tions, "d-add" and "d-negate", and one double length comparison "d-less-than":

D+ <d 1 d2 -> dsum) Add double numbers to give a double

precision result.

DNEGATE (d -» —d) Reverse the sign of the double number.

D< (d 1 d2 -» flag) Flag set true if dl less than d2.

In the stack descriptions here, d,dl etc. simply indicate signed double numbers,

each taking up two stack cells.

We may use -CD+> like {+>, but with double numbers. To add, for example, one

million and two million, type:

1000000. 2000000. D+ D. 3000000 ok

{dnegate} may be used to define a 'double-subtract' operation, should we require it:

: D- DNEGATE D+ ; ok

2000000000. 1. D-D. 1999999999 ok

to subtract 1 from two thousand million! Similarly any number of additional double

number operations could be defined for a special application. Here is a selection:

: 2DUP OVER OVER ; (duplicate double number)

: 2DR0P DROP DROP ; (drop double number)

: D0< SWAP DROP 0< ; (test for negative doubLe number)

: D0= OR 0= ; (test for double zero)

: D= D- D0= ; (test for equal double numbers).

: DABS DUP 0< IF DNEGATE THEN ; (make double number positive)

4We can explain this result as follows:

15 • 65536 = 983040, add 16960 and we have 1000000 !

76

8.2 Mixed Precision
The FORTH-79 standard specifies four 'mixed precision' arithmetic operations.

That is, operations involving a mixture of double and single numbers:

*/ (n 1 n2 n3 -» quot)

*/M0D (nl n2 n3 -> rem quot)

U* (uni un2 -> udprod)

Multiply nl by n2 to give a double

precision intermediate result. Then

divide this by n3 to give a single

precision quotient.

As above, but leave a single

precision remainder as well.

Multiply two unsigned single numbers

to give an unsigned double result.

U/MOD (ud un -> urem uquot) Divide the double number ud, by the

single number un, leaving single

precision remainder and quotient.

A 11 unsigned.

In the stack notation used here un represents an unsigned single length (16 bit)

number and ud an unsigned double length (32 bit) number.

The first two operations are included primarily to avoid overflow problems in

calculations involving multiplication then division. As an example, suppose we

need to calculate six-sevenths of a set of numbers. We could type:

: Frac 6 * 7 / ; ok

100 Frac . 85 ok

10000 Frac . -790 ok (wrong !!)

The first result, of 85, is perfectly correct. The second result is completely wrong. Its

negative sign is a good indication of that. The reason for the error is that the result

of multiplying 10000 by 6 is 60000, which is greater than the largest single precision

number FORTH can handle (32767). Redefining {Frac} to use {*/> will, however,

overcome this difficulty since the intermediate result of the multiplication will be

held as a double length number. 60000 is, of course, well within the double number

range:

: Frac 6 7 */ ; ok

10000 Frac . 8571 ok

This new definition of (Frac) will correctly calculate six sevenths of any single

length number.

Another possible application of "times-divide" {*/>, is to represent decimal

numbers in calculations. Take, for example, 'pi' whose value is approximately:

3.1416

We can define an operation which multiplies by pi, as follows:

: *pi 31416 10000 */ ; ok

and use this to define {AREA}:

: AREA DUP * *pi ; ok (radius squared times pi)

45 AREA . 6361 ok

The remaining two mixed precision operations are the 'primitive' operations used

to define all other FORTH multiplication and division operations, (including those

77

just described). Using them we may define further operations not present in a
standard system.

As an example, suppose we need a double precision multiplication, which will

multiply the two double numbers on top of the stack, and leave a double result. To

achieve this we can multiply the upper and lower halves of each double number

separately, using Cu*}, and combine the partial products to produce the 32 bit

result. Figure 8.1 shows how the operation works like a long multiplication:

a b

c d *

d*bu d * b L

d*au d * a L 0 +

c*bu c*bl 0 +

c*au c*al 0 0 +

p q r s

Figure 8.1 Double length long multiplication

This diagram shows how to multiply the 32 bit number ab, (a is the upper half, b

the lower half), by the 32 bit number cd, (c is the upper half, d the lower half), to

produce the 64 bit result pqrs. Each of the four multiplications involved produces a

32 bit result, whose upper half is indicated by u, lower half by 1. If we should only

require a 32 bit result, then only the first three multiplications are needed and pq
need not be calculated.

By far the easiest way of developing a double multiply on the basis of the algorithm

just described, is to use four variables to hold the 16 bit halves, a,b,c and d, as
follows:

VARIABLE a ok (top number. upper half)

VARIABLE b ok (top number. Lower half)

VARIABLE c ok (second number. upper half

VARIABLE d ok (second number. Lower ha If

: 0* a ! b ! c ! d !
d a b a U*

d a a a U* DROP +

c a b a U* DROP + r ok

6000. 12000 . D* D. 72000000 ok

-5000004. 2 . D* D. -10000008 ok

While this solution is not as fast as if it had been written using no variables but a

great deal of stack manipulation instead, it has the advantage of being easy to write

and understand! Notice also that because we are, in effect, truncating the result to

give only the lower 32 bits the sign of the result is automatically correct.

It is worth noting, before leaving this topic, that without much extra effort we could

develop a 32 by 32 bit multiply, giving a 64 bit result, and then use this operation in

turn to develop even greater precision should we require it.

8.3 The Return stack for High Speed Definitions
In a footnote in chapter 5 I mentioned that the advanced FORTH programmer may

78

use the return stack inside colon definitions as an extra pair of hands . FORTH

provides three operations which allow access to the return stack, (pronounced

"to-r", "r-from" and "r-fetch"):

>R (n ->) Pop n off the normal stack and push onto

the return stack.

R> (-* n) Pop n off the return stack and push back

onto the normal stack.

RSI (^ n) Copy n off the return stack and push onto

the normal stack. (The same as {1} in

most systems.)

These operations prove extremely useful, but they must be used with caution! In

particular note that:

i. A colon definition must have no overall effect on the return stack.

ii. The return stack may be used inside DO loops, provided that the index and

limit values held on the return stack are unaffected. (Unless that is the

intention, as in {leave}!)

As an example, suppose we need to define a word to add one to the fourth item

down on the stack, without affecting the top three items. Using OR) we can move

the top three numbers over to the return stack temporarily to expose the fourth

number for the addition. Then with the {R>> operation move the top three numbers

back onto the normal stack:

: fourth+1 >R >R >R 1+ R> R> R> ; ok

10 20 30 40 fourth+1 40 30 20 11 ok

The overall effect on the normal stack will be as follows:

fourth + 1 (n 1 n2 n3 n4 -» n 1 +1 n2 n3 n4)

but the overall effect on the return stack is to leave it unaffected? We can see this by

noticing that the definition of {fourth + 1} contains the same number of {>R} words

as {R>} words.

We could have avoided the use of the return stack altogether, in the example above,

by using {ROLL}:

: fourth+1 4 ROLL 1+ 4 ROLL 4 ROLL 4 ROLL ;

but this is not only longer but very much slower, since {ROLL} is quite a complex

operation. If {Fourth+1} is to be executed often, then the faster solution using the

return stack is obviously preferable.

Here are two more double number stack words which might be useful. Both utilise

the return stack for temporary storage during execution:

: 2SWAP >R ROT ROT R> ROT ROT ; (swap top two double numbers)

: 20VER 2SWAP 2DUP >R >R 2SWAP R> R> ; (duplicate second double
number on top)

(A definition for {2DUP} was given in section 8.1.)

In addition a mixed precision divide is often useful:

: M/MOD >R 0 RSI U/MOD R> SWAP >R U/MOD R> ;

Stack effect: (ud un -> unrem udquot)

79

8.4 Formatted Number Output

In many real applications the type of numerical output produced by the printing

operation {. > would not be adequate. For a professional looking computer output,

numbers really need to be printed in meaningful formats. For example, dates as

20/01/82, or prices as $49.99. FORTH does provide a set of operations for building

'specialised' number print formats like these examples, in which the format may be
specified in a neat and readable way.

Here are the formatting words summarised. (We do not need to know the detailed

stack effects to use these words and so, for clarity, I shall postpone the stack

descriptions of these words until the summary at the end of the chapter):

<# Start a new formatted number string.

Insert the next digit of the number being printed

into the formatted number string.

#S Insert all remaining significant digits of the number

into the formatted number string.

HOLD Insert the character on the stack into the formatted

number string.

SIGN Insert a minus sign into the formatted number string

if appropriate.

Terminate the formatted number string ready for printing.

None of these words actually causes anything to be printed out, their effect is only

to prepare a number, digit by digit, ready for printing. The standard string printing

operation {TYPE}, which we came across in the last chapter, is used to type out the
string after it has been built by a combination of the above operations.

The best way of seeing how number formatting works is with an example, so here
is a definition for a 'price printing' operation:

DECIMAL ok

; ■$ <# # # 46 HOLD #S 36 HOLD #> TYPE SPACE ; ok

1234. .$ $12.34 ok

The sequence of operations during execution of {.$}, for the double number 1234,
break down as follows:

i. {<#} initialises a special character buffer (which is in fact the PAD
downwards), ready to receive characters.

ii. The first {#} converts the last digit of the number (4), into ASCII in the current

base (decimal), and inserts this into the formatted number string character
buffer.

iii. The second {#} converts the next digit (3) and inserts this into the buffer.

iv. The phrase {46 hold} puts the value 46 into the character buffer. This is the
ASCII code for a decimal point.

v. {#S} converts all remaining significant digits of the number (2 then 1), placing
them into the character buffer.

vi. {36 HOLD} puts the ASCII value for $ into the buffer.

vii. {#>} terminates the completed string and leaves an address and character
count on the stack ready for {TYPE}.

80

viii. Finally, {type space) prints out the finished text string in the correct order,

starting with the last character inserted ($). Then a space is printed.

The important features to notice are that the formatted number string is built

backwards, starting with the lowest digit, and that the formatting operations are

designed to operate upon double precision numbers. This last feature is particularly

useful since it means that we have up to ten decimal digits available for special

number formats, whereas the five digits of single precision are often not enough.

An additional point is that the double precision number must be unsigned for

conversion. If we wish to print negative, as well as positive numbers, then before

the initial {<#) negative numbers must be converted to positive (with {dabs)), and

the fact recorded ready for {sign). The easiest way to do this is with the phrase

{SWAP OVER DABS) before the {<#) word. We may, for example, redefine our {.$)

format using this technique, to cover debits as well as credits!:

: .$ SWAP OVER DABS

<# # # 46 HOLD #S 36 HOLD SIGN #>

TYPE SPACE ; ok

-12345. .$ -$123.45 ok

The effect of {SWAP OVER dabs) on the (signed) double number on top of the stack will

be as follows:

SWAP (d low dhigh -> dhigh d low) Swap high and low halves of d

OVER (dhigh d low -* dhigh d low dhigh) Dup licai te the high order

part on top of the stack.

DABS (dhigh d - dhigh ud) Convert d to unsigned.

Later in the definition the word {SIGN) tests dhigh for negative (dhigh will have the

same sign as the original signed double number d). {sign} then inserts a negative

sign if dhigh is negative or does nothing if it is positive.

One final improvement to our {.$) format would be to print right justified, in a

field width supplied on the stack. This could be particularly useful if our application

required us to print columns of figures, where it would be important for pounds

and pence to be vertically aligned:

: .$ >R (save field width on rstack)

SWAP OVER DABS (adjust for negative numbers)

<# # # 46 HOLD #S 36 HOLD #> (build format)

R> OVER - SPACES (print leading spaces)

TYPE SPACE ; ok (and type number)

-0.01 CR 10 .$ (print in field width of 10)

-$0.01 ok

123.45 CR 10 .$

$123.45 ok

Here we are simply using the character count supplied by {#>} to calculate the

number of leading spaces to print, which we do before the final {type).

To close this section, here is a selection of format definitions which might be useful,

including the date printing format mentioned at the start of the section.

: .DATE <# # # 47 HOLD # # 47 HOLD # # 47 HOLD #> TYPE ;

81

(Print double number d with one trailing space)

: D. SWAP OVER DABS (d -»)

<# #S SIGN #>

TYPE SPACE ;

(Print double number d right justified in field width n)

: D.R >R (d n -*)

SWAP OVER DABS

<# #S SIGN #>

R> OVER - SPACES

TYPE ;

(Print single number nl right justified in field width n2)

: .R >R S->D R> D.R ; C nl ri2 ->)

The word CS->D> used in the final definition here has the effect of converting a

single length number to double length. If your FORTH system doesn't already have

this word it can easily be defined as follows:

: S->D DUP 0< IF -1 ELSE 0 THEN ;

8.5 Fixed Point Arithmetic
We have now covered all of the techniques necessary to be able to develop a useful

fixed point arithmetic 'package'. First, we must recap on what exactly we mean by a

'fixed-point' number; it is one in which the decimal point has a fixed position within

the number, even while it is being used for calculations in the computer. Bearing

this in mind, it seems likely that our standard double precision (integer) arithmetic

operations will work equally well for fixed point numbers. The thing that makes

them fixed point numbers is simply the way we input them and print them out.

Suppose that we decide to 'fix' the decimal point four digits to the left. Our number

range is then:

+/-0.0001 to +/-99999.9999

These numbers are perfectly acceptable input to FORTH. The number 0.0001 will be

represented internally as just 1, and the number 99999.9999 will be represented as

999999999. We could then type:

99999.9999 -0.0001 D+ D. 999999998 ok

to give a result representing the fixed point number 99999.9998.

Using the number formatting techniques covered in the last section we can easily

define a special fixed-point print operation, to use instead of CD.}, as follows:

: F. SWAP OVER DABS

<# # # # # 46 HOLD #S SIGN #>

TYPE SPACE ; ok

0.0005 0.0100 D+ F. 0.0105 ok

100.0000 0.0001 D- F. 99.9999 ok

and we now appear to have our fixed-point addition, and subtraction, but with one

fatal flaw; we must always type in all four digits after the decimal point. If we do

not then some wrong answers are likely to occur, for example:

100.1 0.25 D+ F. 0. 1026 ok

82

which is nonsense!

What is required here is an operation to 'fix' the input numbers so that whatever is

typed in will be represented internally (on the stack) as we really intended. The

number 100.8, for example, needs to be 'fixed' into 1008000 to be consistent with

the chosen fixed point notation. The scaling factor clearly depends on how many

digits were typed after the decimal point in the input number; information available

from the variable {dpl> (see section 8.1). {dpl> can be used to calculate how many

times the input number must be multiplied by 10 in order to fix it. Here is a

definition that will do the job:

: FIX DPL a 0< IF

S->D 0 DPL !

THEN

DPL 3 DUP 4 < IF

4 SWAP DO

10.
LOOP

(if number was single)

(convert to double)

D* (perform scaling)

ELSE

4 > IF

Out of range" 2DR0P

THEN

THEN ;

This definition has a number of additional refinements. One is that it will 'fix' single

precision numbers (which have the effect of setting DPL to -1). The first IF clause

converts these into double numbers with no digits after the decimal point (DPL=0),

so that they will be correctly scaled by the following program. Another refinement

is that numbers with more that four places of decimals will produce the error

message "Out of range", but not corrupt any other numbers on the stack.

We can now perform some useful calculations, for example:

0.04 FIX ok

0.1 FIX D+ ok

0.567 FIX D+ ok

0.0001 FIX D + ok

10 FIX D+ ok

F. 10.7071 ok

We could now, if necessary, extend this package to include other operations.

Multiplication, for example, is performed perfectly correctly by our tD*> operation

of section 8.2, except that it yields a result 10000 times too large (because of the

position of the decimal point). To get round this problem simply requires a routine

to divide by 10000:

: /10000 DUP >R (

DABS (

10000 M/MOD (

R> (

0< IF DNEGATE TH

ROT DROP ; (

sign to return stack)

make unsigned)

mixed precision divide

adjust sign of quotient

EN

and lose remainder)

)

coupled with ID*}, to give a fixed-point multiply:

: F* D* /10000 ;

0.456 FIX 20 FIX F* F. 9.1200 ok

-0.05 FIX 0.6 FIX F* F. -0.0300 ok

83

Of course, -C F*> will not work correctly for very large numbers, where the result of

{D*> exceeds the double number range. To overcome this would require a double
"times-divide" operator -C D*/ >, with a 64 bit intermediate result.

To conclude this section it is worth noting that because our fixed-point arithmetic

involves only whole-number calculations internally, it is very fast, certainly much

faster than equivalent operations using floating-point arithmetic.

8.6 Summary
The following FORTH-79 Standard words have been covered in this chapter:

Stack Manipulation:

> R (n -») "to-r"

Move n onto the return stack for temporary storage. Every >R must have a

corresponding R> in the same control structure nesting level of a colon

definition.

R> < —» n) "r—from"

Move n from the return stack to the data (normal) stack.

R@ (-* n) "i—fetch"

Copy the number on top of the return stack onto the data stack.

Comparison:

D< (dl d2 -> flag) "d—Less—than"

True if dl is less than d2.

Arithmetic:

D + (d1d2->dsum) "d—plus"

Add double precision numbers.

DNEGATE (d -> -d) "d-negate"

Two's complement double number (reverse its sign).

*/ (nl n2 n3 —> nquot) "times-divide"

Multiply nl by n2, then divide by n3, leaving the quotient. The product of nl

and n2 is calculated as a 32 bit double precision number.

*/MOD (nl n2 n3 —> nrem nquot) "times—divide—mod"

As */ but leave the remainder as well. The remainder has the same sign as nl.

U* (uni un2 -> udprod) "u—times"

Multiply unsigned single numbers to give an unsigned double precision

product.

U/MOD (ud un -» urem uquot) "u—divide"

Divide double number by single, giving remainder and quotient. All

84

unsigned.

Formatted Number Output:

<# (->) "Less-sharp"

Initialise a formatted number conversion.

(udl -> ud2) "sharp"

Generate from the unsigned double number udl, the next ASCII character

and add it to the formatted number string. ud2 is the quotient after dividing

udl by BASE, ready for the next digit to be generated. Use between <# and

#>.

#S (ud -> 0 0) "sharp—s"

Convert all remaining significant digits of ud adding each to the formatted

number string. Leave a double zero. If ud was initially zero add a single zero

to the output string. Use between <# and #>.

HOLD (char)

Insert char into the formatted number string. Use between <# and #>.

SIGN (n ud —> ud)

Insert an ASCII minus sign into the formatted number string if n is

negative. Use between <# and #>.

#> (ud -» addr n)

"sha rp—g reater"

End formatted number conversion. Drop ud and leave the address and

character count of the formatted string ready for TYPE.

Miscellaneous

79-STANDARD (->)

Verify that system conforms to the FORTH-79 standard.

85

86

9
Extending FORTH

One of the most remarkable features of FORTH is the

ability to define new 'defining words'. Recall that the effect of a defining word

(such as {variable} or {;}), is to create a new dictionary e’ntry. Defining a new

defining word means specifying a new type of dictionary entry and its action when

executed. In real terms this gives us the ability to define completely new data

structures such as 'string' variables, multi-dimensioned arrays, or even data

structures consisting of mixtures of different data types. In addition, we may define

new 'compiling words' which may be, for example, new control structures.

9.1 Defining new Defining words
We have already seen how to set up arrays using the words {CREATE} and {ALLOT},

followed by a special colon definition to calculate the address of the required array

element. To recap the technique, here it is again for a 10 element array named X:

CREATE x 20 ALLOT (define the array)

: X x SWAP 2 * + ; (calculate address)

While this technique is perfectly satisfactory, it does have the drawback that for

each new array needed, these two lines of FORTH (or something very similar) have

to repeated over again.

We could really do with an entirely new defining word {ARRAY}, with the same

overall effect as the two lines of FORTH above, but repeatable for different array

names. We can indeed create such a defining word, with a special colon definition,

and the word {does>}, as follows:1

: ARRAY

CREATE 2 * ALLOT (create new dictionary entry)

D0ES> SWAP 2 * + ; (runtime action)

To define a ten element array named X, we then simply type:

10 ARRAY X

and for another twenty element array Y, type:

20 ARRAY Y

To reference an element in the array, precede its name by the number of the array

element (counting from zero). For example:

4 X ? (print 5th entry in X)

15 Y ? (print 16th entry in Y)

The operation of {array} may not seem too obvious, so let us examine it step by

step. When {array} is executed, the first thing to happen is that {CREATE} generates

a new dictionary entry, whose name will be the next word in the input stream,

(immediately after the word {array}); "X" and "Y" in the example above. The

'Note that FORTH-78 and earlier standards use the word (xBUILDS) instead of
(CREATE) in defining word definitions. If your system is one of these, then simply
substitute <<builds> for (CREATE) in the examples in this chapter, and thev should
work correctly.

87

number on top of the stack, (immediately preceding the word {array}), is then

multiplied by 2 ready for {allot}, which will reserve the required amount of space

for the new array. The next word in the colon definition is CD0ES>>; a special word

only ever used when defining new defining words. {does>> has the crucial effect of

specifying what new words defined by the new defining word will do when

executed.

If we had not included the phrase {doe$> swap 2 * +} in the definition of {ARRAY}

above, then any new words defined by {array} would have the same effect as

words defined by {CREATE}, that of pushing the address of the first entry in the

space allotted. But because we have included the DOES> phrase, the words

following {D0ES>} will be executed with this address on the stack. Thus typing:

4 X

will cause the words {swap 2 * +} to be executed with the address of the first element

of X on top of the stack, and 4 second on the stack. The result of this will be to leave

the address of the 5th element (numbered from zero) on top of the stack; exactly the

same effect as the special colon definition in the example at the beginning of this

section.

The important point to notice here, is that the words after {D0ES>} are not executed

when {array} is executed, but when words defined by {array} are themselves

executed.

The overall structure of a colon definition to define new defining words is

summarised here:

: new.def i ni ng_word

CREATE (compile time words)

D0ES> (run time words) ;

When the new defining word is used to compile a new dictionary entry, the

'compile time' words are executed; when this new dictionary entry is itself
executed the 'run time' words are executed.

To conclude this section, here is an interesting selection of 'standard' defining word

definitions:

: VARIABLE CREATE 2 ALLOT ; (single length variable)

: CONSTANT CREATE , D0ES> 3 ; (single length constant)

Most systems actually define {variable} and {constant} as machine code primitives

but we could, for example, redefine {variable} so that an initial value is supplied

when the variable is defined (as in earlier FORTH standards):

: VARIABLE CREATE , ;

Providing that your system has the word {C,} which is similar to {,} except that it

compiles only the lower 8 bits (byte) of the number on the stack into the dictionary

entry, then you can define byte length variables and constants:

: CVARIABLE CREATE 1 ALLOT ; (byte variable)

: CCONSTANT CREATE C, D0ES> C3 ; (byte constant)

Finally, double precision variables and constants:

: 2VARIABLE CREATE 4 ALLOT ; (double length variable)

: 2C0NSTANT CREATE , , (double length constant)

88

D0ES> DUP 2 + a SWAP a ;

An associated pair of double number store and fetch operations can easily be

defined:

: D! DUP >R ! R> 2+ ! ; (d addr -»)

: 03 DUP a >R 2+ a R> ; < addr -> d)

9.2 The last word on ARRAYS
There are a number of useful enhancements that can be incorporated very easily

into the new defining word {array} of the last section. One is to check for 'index out

of range'; another is to number the array elements from 1 rather than from 0. A new

definition for {ARRAY} with these enhancements is as follows:

0
1
2
3

4
5

6
7

8
9

10
11

ARRAY

CREATE DUP ,

2 * ALLOT

D0ES>

SWAP 1- SWAP

OVER OVER

a U< NOT IF
Array

QUIT

THEN

2 +

SWAP 2 * + ;

(store array size)

(and reserve space)

(make index 0 upwards)

(duplicate index and addr)

(test for out of range)

range error"

(skip array size)

(calculate address)

This new version of {array} is used just like the old one, for example:

20 ARRAY table ok (define a twenty element array)

0 table Array range error (index out of bounds!)

21 table Array range error

-1 5 table ! ok (set the fifth element to -1)

The compile time action has been modified slightly, to save the array size in the

dictionary entry {dup ,} so that this can be used at runtime to check for index out of

bounds.

The runtime action splits into three distinct sections. The first line (after {does>}),

simply reduces the index, which is second on the stack, by one {swap 1-swap}. This

means that if we specify element 1 of the array we actually get the 0th element.

Lines 5 to 9 inclusive perform the range checking. An interesting feature is the use

of the unsigned comparison word {u<}. This will ensure that negative index values

will also fail the test, since if negative numbers are treated as unsigned they appear

as large positive numbers. The use of {U<} thus avoids two separate signed

comparison operations.

Line 10 adjusts the address on top of the stack to skip over the stored array size,

and line 11 calculates the address of the required element, as in the earlier

definition of {array}.

The runtime code (lines 4-11) will, of course, execute every time an array defined by

{array} is referenced, with a speed penalty because of the range checking. Since the

range checking is only required while a FORTH program is under development, it

89

is common practice to remove it after the application is fully debugged. The
reLOADed program will then run much faster. For example, the {array} definition
above would reduce to:

: ARRAY CREATE

2 * ALLOT

D0ES>

SWAP 1- 2 * + ;

To conclude this section here is a definition for {2DARRAY}, a new defining word to
generate 2 dimensional arrays:

: 2DARRAY CREATE

DUP ,

* 2 * ALLOT

D0ES>

ROT

OVER 3 *

ROT +

2 * + 2 + ;

(save second index)

(reserve array space)

(fetch i1 to top of stack)

(muLtipLy by stored index)

(add i2)

(calculate address of i1,i2)

il and i2 refer to the two indices needed to pick out an element of the array (element
il,i2), as illustrated here:

A 4 2DARRAY square (define a 4 by A array 'square')

-1 00 square ! (set element 0,0 equal to -1)

This array contains 16 elements, numbered 0,0 through to 3,3. A good way to
access each element in turn is with nested DO loops, as follows:

: printsquare

4 0 00

4 0 DO

J I square .

LOOP CR

LOOP ;

(print whole of square)

(step from 0 to 3)

(ditto)

(print element I,J)

9.3 A STRING variable
An obvious candidate for a new defining word is a STRING variable. This would
overcome the limitation of the string handling described in chapter 7, of having to
use a fixed buffer area for all string operations, and would also allow the
development of powerful string matching and comparison operations similar to
those in BASIC.

In order to devise a {string} defining word, we must first consider what string
variables will contain. Character strings of course! But in addition it would be
helpful if a string variable contained its maximum length, and its actual length.
Figure 9.1 illustrates how a six character string variable would store the four
character string "fred".

The maximum length byte will be set up when the string variable is defined and
will be used to check for 'string overflow'. The actual length byte will facilitate
string manipulation, for example, the string printing word {type} can use this
information.

90

6 4 <- — maximum, actual length bytes

"f" "r" <- — stored string

"e" "d"

<- — empty space

Figure 9.1 The proposed string variable structure

Here is a definition for {STRING} along these lines:

: STRING

CREATE

DUP C,

0 C,

ALLOT

D0ES>

2 +

DUP 1- ca ;

(store maximum Length)

(set actual length to zero)

(and reserve string space)

(start address of string)

(actual length byte)

To define a string variable A$, with space for a 20 character string, write:

20 STRING AS

The string variable A$ will leave two values on the stack, the start address of the
string second, and the character count on top. This is exactly what is required by
the standard string printing word {TYPE}, and so to print A$, we write:

AS TYPE

None of this is particularly helpful until we can input strings into string variables,
and for this we really need two operations; {inputs} to input strings from the
keyboard for interactive question and answer type of programs, and {PUTS} to set
up strings inside programs. These two definitions turn out to be almost identical
and so I omit detailed comments from the second:

: INPUTS

DROP 1-

DUP 1- CS

CR ? " 8UERY

1 WORD

HERE Ca

< IF

String too big

DROP QUIT

THEN

HERE DUP Ca 1+

ROT SWAP CMOVE ;

(address of count byte)

(maximum length byte)

(get string from keyboard)

(to HERE)

(actual length of string)

(maximum less than actual?)

(error message)

(clear stack and exi t)

(address and bytes to move)

(into the string variable)

: PUTS

DROP 1-

dup 1- ca

36 WORD (get string following PUTS)

HERE Ca

< IF

String too big"

DROP QUIT

THEN

HERE DUP Ca 1+

91

ROT SWAP CMOVE ;

The delimiter character supplied to {word} in {put$> is the ASCII value for the
character Strings input using {put$> must therefore be terminated by "$", and
can include embedded spaces. Here are some examples of the use of {inputs} and
{PUTS}:

20 STRING AS ok { define 20 character string AS)

AS INPUTS

? test string ok
(input front keyboard)

(terminated by 'return')

AS TYPE test string ok (print AS)

AS INPUTS

*? this string is too long String too big

AS PUTS another tests ok (input from input stream)

AS TYPE another testok (print AS)

An operation to compare two strings is a useful addition to our string handling
vocabulary, and might be defined as follows:

: -MATCH OVER OVER (duplicate length and addr2)

+ SWAP DO (loop thru chars)

DROP 1+ DUP 1- CS { get char from strl)

I CS - DUP IF (not equal?)

DUP ABS / LEAVE (flag)

THEN

LOOP SWAP DROP ;

This operation "not-match" will compare two equal length strings, and has the
stack effect:

-MATCH (addrl n addr2 - flag)

The two strings, both of length n, starting at addrl and addr2 are compared,
leaving a flag value which is 'false' if the strings match, 'true' and positive if
stringl>string2, or 'true' and negative if stringl<string2. This may be included in a
{S=} definition as follows:

: $= ROT OVER = IF (string same length?)

SWAP -MATCH NOT (attempt match then)

ELSE

DROP DROP DROP 0 (else false)

THEN ;

An interesting application of {$=} which, incidentally, gives another example of
GOTOless programming in FORTH, is in a colon definition to ask the user if he
wishes to continue or not. The equivalent in BASIC is a familiar construction in
games programs etc.:

10 PRINT "Dp you want to continue (yes/no)";

20 INPUT AS

30 IF A$="no" THEN END

40 IF A$="yes" THEN 60

50 GOTO 10

60

The same thing in FORTH is:

92

10 STRING ANSWERS

3 STRING YESS YESS PUTS yesS

2 STRING NOS NOS PUTS no$

: CONTINUE?

BEGIN
Do you want to continue (yes/no)

ANSWERS INPUTS (get reply

ANSWERS NOS S= IF QUIT THEN

ANSWERS YESS S=

UNTIL ; (loop until the answer is

II

)

yes)

Inserting the word {continue?} will cause a program to halt, and ask the question
"Do you want to continue (yes/no)?". If the answer typed into the keyboard is "no",
then the program will quit. If the answer is "yes", then the program continues. If
the answer was neither "yes" or "no", then the question will be repeated.

9.4 Self Modifying Data structures
A remarkable consequence of FORTH's ability to define new defining words is that
we may build 'intelligent' data structures; for example, arrays that automatically
maintain averages, or lists that re-order themselves whenever any entry is altered.

To take the first of these examples, suppose we have a 10 element array 'readings',
defined using the word {ARRAY} of section 9.2. To compute the arithmetic average of
the contents of this array requires adding together all 10 entries and dividing by 10.
A special definition could easily be written to do this as follows:

: average (take average of array 'readings1)

0 (result=0)

11 1 DO (step 1 to 10)

I readings 3 + (add up each element)

LOOP

10 / ; (and divide by 10)

If our FORTH application needed us to calculate an average like this often and for
many different arrays then, to simplify the overall program, we should define a
new defining word {*ARRAY} with the averaging function built into the DOES> part

of the definition:

: *ARRAY ('s

CREATE

DUP ,

0 ,
0 DO

0 ,
LOOP

D0ES>

DUP DUP 3

SWAP 4 +

OVER 0 SWAP

0 DO

OVER 3

SWAP 2

LOOP

SWAP DROP SWAP

OVER 2+ !

2+ SWAP 2 * + ;

cial' array with running average)

(save array size)

(set 1 average1 to zero)

(step thru elements)

(defining and zeroing)

(get array size)

(point to start of array)

(step thru array)

+ (add up)

SWAP (bump up pointer)

(divide by array size)

(store average in element 0)

(calculate address I

93

Arrays defined by {*array} may be used just like those defined by {array}, for
example:

10 *ARRAY readings ok (

10 1 readings ! ok (

20 2 readings ! ok (

1000 10 readings ! ok (

2 readings ? 20 ok (

one set of readings)

readings(1)=10)

readings(2)=20)

readings(10)=1000)

print contents of readings(2))

Which is exactly how we would expect a 10 element array, with entries numbered
from 1 to 10 to behave. But typing:

0 readings ? 103 ok

will print the average of the values currently contained in the array
((10+20+1000)/10 = 103). This average will be calculated afresh every time the
name of the array {r e a d i n g s} is quoted and will always be true however many times
we might have altered the values stored in the array.
For example:

870 10 readings ! ok
50 6 readings ! ok

(alter readings(IO) to 870)

(set readings(6) to 50)

0 readings ? 95 ok (new average is 95)

and, of course, all arrays defined by {*array> will have this function built in!

9.5 A Closer Look at the Dictionary
All dictionary entries share the same basic internal structure. In FORTH
terminology each part of a dictionary entry is known as a 'field' and every
dictionary entry has four distinct fields; the name field, link field, code field and
parameter field. Figure 9.2 shows the field structure of a dictionary entry named
"EXAMPLE" - it doesn't matter whether {example} is a variable, constant or colon
definition - the structure is the same in each case.

Figure 9.2 The Field structure of a dictionary entry

The name field contains the character count of the original <name> of the
definition, followed by the characters of the name stored as ASCII bytes. The length
of the name field thus depends on the length of the <name> and FORTH-79

99

specifies a 32 byte maximum name field, so that only the first 31 characters of a

longer <name> will be stored."
The character count takes up only the lower 7 bits of the first byte in the name field,

which implies an absolute maximum of 127 characters in the original defined

<name>. The top bit is the 'precedence bit' of which I will say more later in this

section.

The link field is a fixed length 16 bit cell containing the address of the name field of

the previous dictionary entry. FORTH uses this to quickly search backwards

through the dictionary when looking for a word. (The FORTH dictionary is what

computer scientists would call a 'linked list').

The code field is another fixed length 16 bit cell, and contains the 'code pointer'.

This is the address of the 'run-time' code which is executed when the dictionary

entry is executed. It is the code pointer that distinguishes between variable,

constant or colon definition since the 'action of the run-time code is different in

each case.

The following table summarises the action of the run-time code for each of the four

basic types of dictionary entry:

Defining uord Action of run-time code

VARIABLE or CREATE Push the start address of the parameter

field onto the stack. (Parameter field

address.)

CONSTANT Fetch the contents of the first cell in

the parameter field, and push onto the

stack.

. Execute the words of the colon definition

by the addresses stored in the parameter

field.

The run-time code described above is normally defined in machine-code for speed,

but we can devise our own run-time code in words defined by {CREATE} using

{D0ES>}, as shown earlier this chapter.

The final field in the dictionary entry, the parameter field, can contain almost

anything. In the case of:

CREATE null ok

the parameter field is empty and of zero length (but the parameter field address will

still be returned by {null}). In dictionary entries generated by {VARIABLE} or

{CONSTANT} the parameter field consists of one 16 bit cell, containing the value of the

variable, or constant. The parameter field may be extended in any of the above

three cases by using {allot} {,} or {c,}.

In a colon definition, the parameter field contains a list of code field addresses, one

for each word in the body of the colon definition. To illustrate this figure 9.3 details

the dictionary entries generated by the following:

-Many FORTH systems limit the name field to 4 bytes, which means that
although names mav be longer, the first three characters of equal length names
must be unique to avoid ambiguity. Check your system documentation for more
details on this.

95

VARIABLE X

: XSQ X @ DUP * X ! ; (Square X)

memory addresses

(hex) 1000

1004

1008

100E

1010

1012

101 c

previous parameter field

, 1 X

Li nk

(variable) code pointer

space for variable

3 X

S Q

link 1000

(colon) code pointer

address of X = 1004

address of @

address ol DUP

address ol *

address ol X = 1004

address of EXIT

free space

(pointed to by HERE)

(to previous entry)

Figure 9.3 Two Dictionary entries illustrated

The action of the colon run-time code (which is often referred to as the 'address
interpreter'), is to fetch and jump to each address in the parameter field in turn. As
an example, when FORTH executes (XSQ} it jumps to the address interpreter
pointed to by the code field (address 100E). The address interpreter then:

i. Fetches the first address in the parameter field, which is the code field
address of (x>.

ii. Pushes the address of the next cell in the parameter field (1012) onto the
return stack.

iii. Jumps to tx>.

When the run-time code for the variable (x> has finished, the address interpreter
pops the value 1012 off the return stack, to fetch the next code field address, for the
word (a>, and the above three steps are repeated.

The final entry in the parameter field of CXSQ} was generated by the terminating
semi-colon and is the word {exit}, {exit} has the effect when executed of returning
us to the next higher level of execution (by popping an address off the top of the
return stack and passing it to the address interpreter). This means that if we have
included {XSQ} in another colon definition, for example:

: TEST XSQ X a ;

96

when <test> executes, {XSQ} will be executed with the address of the next word in

{test}, which is {X}, on the return stack. When the final {exit} of {xsfi} is executed,

the address interpreter will return correctly to the next word in {test}. It is this use

of the return stack that enables us to 'nest' colon definitions in this way.

We can use the word {exit} inside colon definitions (but not DO loops!) in order to

prematurely return to the next higher level of definition, but this breaks the

structured nature of FORTH and its use is not recommended.

A question you may well be asking now is "What happens if I have typed {XSQ}

directly so that as soon as it has finished, control is returned to the keyboard and

'ok' printed - how does {exit} achieve this?". The answer may come as a surprise,

but a FORTH system is always executing a colon definition even while waiting for

typed input! {EXIT} returns us back into this outer program which looks, in outline,

like this:

: QUIT BEGIN
(Clear the return stack)

(Fetch a line of input using QUERY)

(Execute the input using EXECUTE)

ok" CR

0 UNTIL ; (Loop forever)

(This is virtually the same {quit} that we met in chapter 5.8!)

9.6 Defining new Compiling words
Armed with an understanding of the FORTH dictionary structure we can now go

on to define new 'compiling words', but first let us review some compiler and

dictionary handling words.

The two words {find} and {1} (pronounced "tick") both return information about a

particular dictionary entry. FIND <name> will return, on the stack, the code field

address of the dictionary entry for <name> (or zero if the word is not found in the

dictionary). Thus typing:

FIND TEST . 12345 ok (print code field address of TEST)

will tell us if {TEST} is in the dictionary. The word {EXECUTE} will execute the word

whose code field address is on the stack, so that:

FIND TEST EXECUTE

is exactly the same as typing simply:

TEST

A rather more useful application of {EXECUTE} is to execute 'indirectly' that is, using

a code field address stored in a table. We shall see an example later in this section.

{' <name>} will return the parameter field address of the dictionary entry for

<name> if it exists. Thus:

10 CONSTANT A

1 1 A !

enables us to change the value of a constant.

If {'} is used inside a colon definition it has the unusual effect of using the very next

word in the definition as the <name>, not the next word in the input stream. For

97

example:

: TESTPFA ' TEST ; ok
TESTPFA . 12347 ok (parameter field address of TEST)

The 'precedence bit', mentioned in figure 9.2 of the last section, has the effect of
determining whether a word is compiled or executed when it occurs within a colon
definition. Words that have the precedence bit set are called 'immediate' words,
and are executed while the colon definition containing them is being compiled. The
word {immediate} sets the precedence bit of the most recently defined word. For
example in:

: PRINTNOW CR Compiling.." CR ; IMMEDIATE ok

the word {printnow} will always be executed, and will not generate any compiled
coder

: TEST PRINTNOW CR Running.." CR ;

CompiLing..
ok
TEST

Running..

ok

One of the effects of the defining word {:} is to switch FORTH into 'compile' mode,
and the terminating {;} switches FORTH back into 'execute' mode. The system
variable {state} tells us which of these two modes FORTH is in at any particular
time, for example:

: MODE? STATE 3 IF ." Compiling " ELSE Executing " THEN ; ok
IMMEDIATE ok

MODE? Executing ok (Execution mode)

: TEST A + MODE? ; CompiLing ok (Compile mode)

The word {mode?}, being immediate, will not generate any compiled code.

The two words {{} "left-bracket" and {]} "right-bracket" have the effect of
switching FORTH into 'execute' or into 'compile' mode respectively. Thus in:

: TEST ." Print later " C ." Print now " 3 ; Print nou ok
TEST Print Later ok

The FORTH enclosed by the square brackets is executed during the compilation of
{TEST}, and generates no compiled code. A rather more useful application is to do
'compile time' arithmetic. For example in:

1024 CONSTANT IK ok
: ADD.5K C IK 5 * 3 LITERAL + ; ok

The definition of {add_5K} is identical to:

: ADD.5K 5120 + ; ok

but much more readable. The word {literal} has the effect of compiling the
number on top of the stack (in FORTH terminology compiled numbers are called
'literals'). Thus:

: TEN C 10 3 LITERAL ; ok

and:

: TEN 10 ; ok

98

are identical, and produce the same compiled code.3
An interesting application of right-bracket is to generate a table of code field
addresses. The word {execute} may then be used to execute one of the words
pointed to by the table, as follows:

: ZERO zero " ; ok < Some example words)

: ONE one " ; ok
: TWO two " ; ok

CREATE VECTORS] ZERO ONE TWO L ok (create vector table)

: GOVECTOR 2 * VECTORS + S EXECUTE ; ok

0 GOVECTOR zero ok
2 GOVECTOR two ok

The word {compile} may be used to define new words which have both a run-time
and a compile-time action. The structure of the definition of such a compiling

word' is as follows:

: run_time_action

: compiling_word COMPILE run_time_action

.. compile time words .. ; IMMEDIATE

Since the new compiling word is an immediate it will be executed when it occurs
within a colon definition. The word {compile} will compile the code field address
for {run_t ime_acti on}, and the compile time words will be executed right away.

The word {literal} is an example of a compiling word, and could be defined as

follows:

(LITERAL) R> (addr

DUP (dup l

2+ >R (poi n

a ; (get

ess of number)

icate it)

t to next cell in code field)

number to stack)

: LITERAL COMPILE (LITERAL)

, (store number in dictionary)

; IMMEDIATE

At compile-time the number on top of the stack is stored in the next cell in the
dictionary by {,}. When the run-time code {(LITERAL)} is executed, at run-time, the
value on top of the return stack will point to the next cell in the code field, which
contains the number. {(LITERAL)} fetches the number onto the stack, and adds two
to the address on top of the return stack so that the address interpreter will skip
over the cell containing the number.

The looping and conditional structures are also examples of compiling words which
modify the address on top of the return stack, at run-time, on order to force the
address interpreter to continue from elsewhere in the program. To illustrate this,
here is a definition for a new looping structure STEP .. DOWN:
At compile-time {STEP} pushes the current dictionary address supplied by {HERE}

onto the stack, and the corresponding {DOWN} compiles this address into the code
field using {,}■ The run-time code {(down)} places this branch address on the return

'^Literals actually generate two entries in the parameter field. The first points to
the run-time code for literals, and the second cell contains the number. The
run-time code will have the effect, when executed, of fetching the number and
pushing it onto the stack.

99

: STEP COMPILE >R

HERE ; IMMEDIATE

(Loop counter to return stack)

(place HERE on return stack)

: (DOWN) R> (fetch return address)

(and Loop counter) R>

1- DUP IF (decrement Loop counter)

(save new vaLue)

(and branch address)

>R

a >R

ELSE

DROP

2 + >R

(end of Loop)

(drop Loop counter)

(and skip over branch address)

THEN ;

: DOWN COMPILE (DOWN)

, ; IMMEDIATE

(compiLe run-time code)

(save HERE from STEP in dictionary)

stack (a >R> when the loop should be repeated, or skips over it C2+ >R> at the end of
the loop. The loop counter is held on the return stack and copied off the normal
stack by {STEP} at run-time using {>R>. For example:

: TEST 10 STEP I . DOWN ; ok
TEST 10987654321 ok

Finally, the word {[compile]} should be mentioned. This is used to override the
precedence bit in immediate words, so that they may be included in colon
definitions and executed at run-time, not compile-time. As as example, suppose we
need to "tick" the next word in the input stream. Using [COMPILE] we could write:

: .PFA [COMPILE] ' . ; ok (print parameter field addr)

.PFA TEST 12347 ok

9.7 Summary
The following new words have been introduced in this chapter:

Defining words:

D0ES> (—>) "does"

Defines the start of the run-time action of a new defining word. Used in the
form:

: defining-word ... CREATE ... D0ES> ... ;

And then:
defining-word <name>

When <name> is executed the words between DOES> and ; are executed
with the parameter field address of <name> on the stack.

Dictionary words:

-* addr) "tick"

When used in the form ' <name> leaves the parameter field address of the
dictionary entry for <name> on the stack. If used in a colon definition the
address is compiled into the dictionary as a literal. Error if <name> is not
found in the dictionary.

FIND -* addr)

100

Return the code field address of the next word in the input stream, or zero if
the word is not found in the dictionary.

Compiler words:

IMMEDIATE (-» >

Mark the most recently defined dictionary entry as a word that will be
executed even when it occurs within a colon definition.

LITERAL (n ->)

If compiling compile n into the dictionary as a 16 bit literal, which will leave n
on the stack when later executed.

STATE (-> add r)

System variable indicating the current state of the system. A non-zero value
indicates compilation is occurring.

[(->) "Left-bracket"

End compilation so that subsequent text is executed.

3 (_>) "right-bracket"

Set compilation mode so that subsequent text is compiled.

compile < ->)

When a word containing COMPILE executes the code field address following
COMPILE is copied (compiled) into the dictionary.

[COMPILE! (—>) “bracket—compiLe"

When used in the form [COMPILE] <name> the word <name> is compiled
even if it is an immediate.

EXECUTE (n -»)

Execute the word whose code field address is on the stack.

exit (->)

When included within a colon-definition EXIT has the same effect as -C; >. May
not be used within a DO loop.

101

102

10
FORTH Finale

In this concluding chapter I will put some of the
techniques described so far into practice in two complete FORTH programs. I shall
outline each program from initial conception, through development and debug¬
ging, to finished Vocabulary7. The first is the calendar vocabulary mentioned in the
introduction, and the second is an interactive 'video game'. These are chosen both
because they are interesting programs in their own right, and because they each
illustrate a particular type of programming problem; the calendar program is largely
mathematical, and the video game relies heavily on high speed graphics. Neither
program requires disk handling and will run equally well on a cassette based

system.

10.1 A Calendar Vocabulary
A useful set of 'calendar' words were first proposed in the introduction to this

book. They are:

day (day month year ->) Print the day of the week

that the specified date falls

upon.

month (month year -») Print a calendar for the

month specified.

year (year -») Print a whole year calendar.

days let t (day month year ->) Print the number of days

remaining until the current

year end.

Having specified the end result we must now develop a strategy for arriving at this
result, in other words, a logical set of sub-definitions which will ultimately build the
final definitions as specified here. The key operation at the heart of a calendar
program in any language is usually to calculate the weekday of January the first, for
any year. Fortunately there is a well known method, called Zeller's congruence, for
calculating this, which we can easily use to define a wprd {janlst}. Logically the
next operation needed will be to calculate how many days into the year any given
day and month is, which we can call {daynumber}. The combination of {janlst} and
{daynumber} should then allow us to define the first word in our calendar
vocabulary fairly easily...

10.1.1 Zeller's Congruence
Blocks 100 and 101 (See section 10.1.4 for full listings).

The following rather complicated formula will calculate the day of the week of the
first day in any year, as a number from 0-6 (Sunday to Saturday respectively), and is
good for any year from 1582 to 4902 inclusive! In addition it automatically takes care
of leap years. The formula is expressed as it would be written in floating point
BASIC, with the year in the variable Y, and the resulting day in D.

A = INT((Y—1)/100)

B = Y— 1—10 0 * A

103

D = 799+B+INT<B/4)+INT(A/4)—2*A

D = D HOD 7

Translating this directly into FORTH, with the same variable names, gives the
following definition:

VARIABLE Y (year)

VARIABLE a (temporary variables)

VARIABLE b

: janlst Y S 1 - 100 / a !

Y 3 1 - 100 a 3 * - b !

799 b ! * b a i / t a a 4 / * I a a * -

7 MOD ;

The calculation is simplified slightly by .the fact that FORTH division is
automatically integer division, {janlst} could, of course, be written without the
temporary variables a and b, and instead use the stack to retain these intermediate
values until they are needed. Most FORTH programmers would, however, feel that
the extra complexity (in writing and debugging) is not warranted - especially since
{janlst} is not a time critical operation, and will probably only need to be
calculated once for every calendar operation.

Entering this into a new disk block (or the equivalent on a cassette based FORTH
system), and LOADing the block will enable us to test {janlst}, as follows:

1982 Y ! ok
janlst . 5 ok

Where the result 5 indicates 'Friday' - and a glance at a 1982 calendar will confirm
that January the 1st 1982 was indeed a Friday. Now check that {janlst} hasn't left
any unwanted values on the stack:

. 0 STACK EHPTY

A useful check to apply to any new definition.

At this stage we realise that before long a word which prints out the day of the
week as "Sunday", "Monday" etc. will be needed, and since such a word will
enable us to test {janlst} very easily, we may as well define the word next:

: "days" Sunday " Monday " Tuesday " Wednesday"

Thursday " Friday " Saturday " ;

: printday 12 * 1 "days" +3+9 TYPE ;

The word {"days"} simply contains a list of equal length strings. Each string will
take up exactly 12 bytes of the parameter field; the first two bytes contain the code
pointer for {."}, the third is the count byte and the remaining 9 bytes contain the
string itself, {printday} needs a number on top of the stack between 0 and 6, which
is multiplied by 12 and added to the parameter field address returned by the phrase
{' "days"}. Adding 3 to skip the code pointer and byte count leaves the address of
the required string, ready for {9 type}.

A simple 'diagnostic' definition will now enable us to test both {janlst} and
{printday} rigorously:

: teitl 1985 1980 DO

I Y !

Jan 1st " I . SPACE

janlst

104

- " printday CR

LOOP ;

Which should produce the result:

Jan 1st 1980 - Tuesday

Jan 1st 1981 - Thursday

Jan 1st 1982 - Friday

Jan 1st 1983 - Saturday

Jan 1st 1984 - Sunday

The technique of interspersing 'diagnostic' definitions with the major definitions
under development is well worthwhile, and aids debugging considerably!

10.1.2 Daynumber and day
Blocks 102 and 103.

The word {daynumber} must calculate the number of days in the year up to a given
day and month, so that, for example the 2nd of February is the 33rd day in the year
(31 days in January + 2). The best approach here is to first set up an array of
constants representing the number of days in each month, using the technique
described in chapter 3.5, and since only small values are involved a byte array is
appropriate:

CREATE dpmtable (days per month)

31 C, 28 C, 31 C, 30 C, 31 C, 30 C,

31 C, 31 C, 30 C, 31 C, 30 C, 31 C,

: dpm dpmtable + C3 ;

We can now write {daynumber} very easily:

VARIABLE D (day)

VARIABLE M (month)

: daynumber 0 (initial, value)

12 0 DO

h a i = if
D a + LEAVE

ELSE

I dpm +

THEN

LOOP ;

{daynumber} will return, on the stack, the number of days up to the day and month
given by the variables D and M respectively. It works by simply looping through
the months from January (0) to December (11). When the month specified by the
variable {M} is reached, then the day in {D} is added to the daynumber so far, and
the loop exited using {leave}, else the number of days in the month returned from
the table by {dpm} is added to the daynumber, and the loop repeats.

The first of the required calendar vocabulary words may now be easily written as:

: day Y ! M ! D !

janlst daynumber +1-7 MOD

printday ;

The day returned by {j a n 1 s t} for the specified year { Y }, is added to the daynumber,
and 1 subtracted to make the total run from zero. The phrase {7 mod} leaves a value

105

from 0 to 6, representing the actual day of the week, which is printed by
{printday!. For example:

31 11 1981 day Thursday ok (31st december 1981)

1 0 1982 day Friday ok (1st january 1982)

The months run from 0 for january, through to 11 for december.

Although Zeller's congruence allows for leap years, the words {dpm! and hence
{daynumber! do not. Additionally, the definition for {day! does not check to see if
the date specified actually did, or will, exist. These two necessary enhancements,
together with constant definitions for month names, are straightforward, and are
shown in the full block listings for the calendar vocabulary in section 10.1.4.

10.1.3 Month, year and daysleft
Blocks 104 and 105.

The major complexity in the definition of {month! is that of printing layout, since
essentially all that is required is to print the numbers from 1 up to the number of
days in the month, in their correct 'day' columns, as follows:

Sun Mon Tue Wed Thu Fri Sat

1 2

3 4 5 6 7 8 9

etc..

We need to calculate the day of the week that the 1st of the month falls upon, then
print spaces until under this 'day' column. Once there we count the days of the
month, inserting newlines after each 'Sat' column has been filled. The easiest way
of keeping track of where we are, in the current line, is with a 'character counter'
variable, which is incremented whenever numbers, or spaces, are printed.

A definition for {month! along these lines is as follows:

Q VARIABLE chars

1 : month Y ! M ! 10!

2 SPACE ." Sun Mon Tue Wed Thu Fri Sat"

3 janlst daynumber +1-7 MOD

4 4 * DUP SPACES chars !

5 M S dpi It 1 DO

6 14.R 4chars+!

7 chars S 24 > IF CR 0 chars ! THEN

8 LOOP ;

The phrase in line 3 is identical to that used in {day! and has the effect of returning
the weekday of the first of the month, since the day variable {D! has been set to 1

(on line 1). Line 4 then uses this weekday to print spaces up to the required column,
and saves the number of spaces printed in {chars!. Line 5 sets up the DO loop to
count from 1 up to the number of days in the month {Ml! The phrase {I 4 . R!1 on
line 6 prints each date right justified in its column, and {4 chars +!! increments the
character counter, which is checked on line 7 to see if a {CR! is needed.

‘If you don't have {.RJ a definition appears in chapter 8.4.

106

The version of (month} in block 104, in section 10.1.4, is slightly improved, with
range checking using (datecheckJ, and a heading printed by (monthprint}. In
addition (dpm> takes account of leap years - see block 102. A sample run of (month}

is as follows:

february

february

1982 month

1982

Sun Hon Tue Ued Thu Fri Sat

1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22

28

23 24 25 26 27

ok

The definition of (year} is now very straightforward, as shown in the block 104
listing.

The final word in the calendar vocabulary (daysLeft} poses only one slightly
awkward problem, which is how to calculate the number of days until the year end
(which, in the business world, can be any calendar date), if the next year end is in
the following year. The problem is that of leap years (again!); the word (daynumber}

as defined in block 103 copes with leap years, but to calculate the number of days
left in the current year (till december 31st) we must subtract the daynumber from
365 or 366 as appropriate. The definition of (days left} is shown in block 105 and is
used as follows:

1 june yearend ok (initialise yearend)

1 march 1982 daysleft 92 ok

2 june 1982 daysleft 364 ok

10.1.4 The Calendar Vocabulary blocks listed

100 LIST

0 (Calendar Vocabulary, Zeller's congruence)

1 DECIMAL

2 FORTH DEFINITIONS

3 VOCABULARY calendar

4 calendar DEFINITIONS

5

6 VARIABLE Y VARIABLE M VARIABLE D (Year, Month, Day)

7

8 VARIABLE a VARIABLE b (work variables for janlst)

9 : janlst (return the day, 0-6, of jan 1st in year Y)

10 Y a 1 - 100 / a !

11 Y a 1 - 100 a a * - b !

12 799 b a + b 3 4 / + a a 4 / + 2 b a * -

13 7 MOD ; (_ n)

14

15 101 LOAD 102 LOAD 103 LOAD 104 LOAD 105 LOAD

101 LIST

0 (Calendar Vocabulary, string printing)

107

1 : "days" (weekday string tabLe)

2 Sunday " Monday
II Tuesday " . " Wednesday"

3 Thursday " Friday " Saturday " ;

4 : ; printday (print weekday 0-6)

5 12 * 1 "days" + 3+9 TYPE ; (n ->)

6

7 : : "months" (month string table)

8 January " February II ."March " . " Apri l "

9 May " J une " ."July " August "

10 September" October • 1 ." November " . " December " /

11 : : printmonth (print month 0-11 >

12 12 * 1 "months" + 3 + 9 TYPE ; (n ->)

13

14

15

102 LIST

(Calendar Vocabulary, date checking words)

CREATE dpmtable

31 C, 28 C,

31 C,

31 C,

30 C,

30 C,

31 C,

leap?

31 C,

3 4 MOD 0=

a 100 MOD 0= NOT AND

(table of days per month)

31 C, 30 C,

30 C, 31 C,

(is year Y a leap year)

Y a 400 MOD 0= OR ;

: dpm DUP dpmtable + Ca (
SWAP 1 = leap? AND

IF 1+ THEN ;

(Check date within range, all return 'true

: Ycheck Y a DUP 1582 < SWAP 4902 > OR ;

: Mcheck M 8 12 U< NOT ;

: Dcheck D a 1 - M a dpm U< NOT ;

: datecheck Ycheck Mcheck Dcheck OR OR

IF Date error" ABORT THEN

(-+> flag)

return no of days per month)

(add 1 if Feb and leap yr)

(nl -> n2)

if NOT)

(-» flag)

(-> flag)

(-> flag)

103 LIST

0
1
2
3

4

5

6
7

8
9

10
11
12
13

14

15

Calendar Vocabulary, daynumber and day)

1 C february 2 C march

5 C june 6 C july

9 C October 10 C november

C january

C may

C September

CONSTANT

apri l

august

december

daynumber 0 12 0 DO (
m a i

calculate

= IF

D a +
ELSE

I dpm

THEN

days up to date D/M/Y

(loop through months

LEAVE (unti l M=I

LOOP ;

calculate day of week of

D/M/Y janlst daynumber +

djy Y ! M ! D ! datecheck

D/M/Y printday ;

(accumulate days)

(-> n

date D/M/Y, 0-6)

1- 7 MOD ; (-» n

(print day of date given

(d m y -*

104 LIST

0 (Calendar Vocabulary, month and year)

1 VARIABLES chars < character counter)

108

2 : month

3

4

5

6
7

8
9

10
11
12 : year

13

14

15

y ! M ! ID! datecheck (print specified month)

CR H a printmonth SPACE Y i , (heading)

CR SPACE Sun Hon Tue Wed Thu Fri Sat" CR

D/m/Y (calculate 1st day of month)

4 * DUP SPACES chars ! (go to day column)

H a dpm 1+ 1 DO (step thru days in month)

I 4 .R 4 chars +!

chars a 24 > IF CR 0 chars ! THEN

LOOP CR CR ; (my-.)

(print whole year calendar)

12 0 DO (loop thru months)

I OVER month

LOOP DROP ; < y -* >

105 LIST

0
1
2
3

4

5

6
7

8
9

10
11
12
13

14

15

(Calendar Vocabulary, yearend and daysleft)

VARIABLE Hend VARIABLE Dend (current end of year)

: yearend l intialise end of year)

OVER OVER 1 = SWAP 29 = AND (29th of Feb?)

IF. You can't be serious!" ABORT THEN

Hend ! Dend ! ; (dm-*)

: daysinY (How many days in year Y)

leap? IF 366 ELSE 365 THEN ; (-> n)

: daysleft (Number of days up to yearend)

Y ! H ! D ! datecheck daynumber

Hend a H ! Dend a D ! datecheck daynumber

OVER OVER > NOT IF (specified date BEFORE yearend?)

SWAP - .

ELSE daysinY SWAP -

1 Y +! datecheck daynumber + .

THEN ; (d m y ->)

10.2 A Video Game Vocabulary
The game I have chosen to illustrate this vocabulary is 'Solo squash' (which is
actually the player versus the machine!). The player controls a bat, which may be
moved from left to right along the bottom line of the video display. The machine
'serves' a ball, with a random direction and speed from the top line of the display
moving downwards. If the bat intercepts the ball then it bounces back up the
screen, and positive points are scored, otherwise points are lost and the machine
serves a new ball. Whenever the ball hits the top or sides of the screen, or the
middle of the bat, then it 'bounces' in a perfectly elastic fashion. If the player
catches the ball with the side of the bat, then it deflects randomly.

In order to 'structure' the vocabulary effectively it is helpful to plan the final word,
{squash}, right at the start so that we can predict which intermediate words will
need to be developed. The easiest way to set down the algorithm is with FORTH
comment as follows:

: squash

(clear the screen and print the score)

(generate a new ball)

BEGIN

109

(plot the ball and bat)

(check keyboard and move the bat if necessary)

(move the ball, bouncing if necessary)

IF (the ball is on the baseline)

IF (and it hit the bat)

C deflect the ball upwards)

(increment the score)

ELSE (the bat missed the ball)

C serve a new ball)

(decrement the score)

THEN

(print the new score)

THEN

0 UNTIL ; C and loop)

All we have to do now is write definitions to 'fill in' the comment!

Because of its speed FORTH lends itself particularly well to programs of this type;
in fact, FORTH games programs often have to be slowed down in order to make
them possible for anyone with less than lightning reflexes! Another interesting
point is that many 'arcade' video games are currently written in FORTH.

10.2.1 The Ball handling routines
Blocks 110 and 111 (See section 10.2.4 for full listings).

At the heart of any video game is 'graphics' handling; the ability to directly alter the
contents of the screen without the normal constraints of output one line at a time.
Any computer system with a memory mapped display, in which a single 'pixel'
may be directly addressed and altered can be used. Figure 10.1 illustrates the
display screen as defined throughout this vocabulary.

x ->

1
2
3

y ■

ymax ____

Figure 10.1 The videogame vocabulary display

A 'pixel' is a single picture element, and may be a 'dot' in a high resolution system,
or a 'block of dots' in a low resolution (chunky graphics) system. Providing that the
video memory addressing starts at the top left hand corner, and runs contiguously
toward high memory, finishing in the' bottom right corner, then we can define a
word to plot a pixel in the position (x,y) as follows:

HEX F000 CONSTANT vdust

DECIMAL 64 CONSTANT width

16 CONSTANT height

: coord width * + vdust + ;

: plot coord C! ;

(start of video memory)

(width of screen)

(height of screen)

(x y -» addr)

(char x y ->)

This example defines {plot! for a 16 line by 64 character 'chunky' graphics system.
If the graphics character has the code 192 (decimal), then it may be plotted at

I 10

position 5,5 by the phrase:

192 5 5 plot

In systems with a high resolution video display {plot} will probably be defined to
light up the pixel addressed, and an additional word {unplot} will switch off the
pixel, in which case the phrase {charxypletHn the videogame vocabulary will be
replaced by {x y plot}, or if char is 32 ("space") by {x y unpLot}. Since there is no
standard for high resolution video displays I have assumed, throughout the
videogame vocabulary, a low resolution 'chunky graphics display.

As the final video game will involve mostly ball handling (moving the ball, or
finding out where it is), and these functions will be spread out over a number of
colon definitions, it seems sensible to hold the current ball position coordinates in a
pair of variables, {x} and {y}. In addition, {x} and {y} must never go outside the
bounds 0 to xmax and 0 to ymax respectively, and so a definition {xyplot} which

includes boundary checking will be useful:

width 1- CONSTANT xmax C set up xmax and ymax)

height 1- CONSTANT ymax
VARIABLE x VARIABLE y (ball coordinates)

: xycheck x 3 0 MAX x ! (force x to zero, if less)

x 3 xmax MIN x ! (or to xmax if greater)

y a 0 MAX y ! (force y to zero, if less)

y a ymax MIN y ! ; (or to ymax if greater)

: xyplot xycheck x a y a plot ; (char -*)

Whenever {x} or {y} fall outside their respective ranges {xycheck} will 'force' them
onto a boundary. Notice the use of {MAX} and {MIN} to avoid complex IF structures.

The ball is moved by the word {xystep}, which adds the values in the variables
{xstep} and {ystep} to {x} and {y}. 'Bouncing' off a side is achieved simply by
NEGATEing {xstep} or {ystep} as appropriate for the side that the ball has hit. The
definitions {xleft}, {xright}, {ytop} and {ybottom} check to see if the ball has hit
the left side, right side, top or bottom, and 'bounce' the ball if it has. The test
definition {pattern} in block 111 will test these functions by drawing a line which
bounces when it hits a side, as illustrated by figure 10.2.

Type {n pattern} to plot n points. Altering the initial values of {x}, {y}, {xstep} and
{ystep} will produce some very interesting patterns!

10.2.2 Bat handling
Block 112

The word {plotbat} will draw a bat three pixels wide on the bottom line of the
display, for example:

32 bat !

163 plotbat

will draw the bat, in our 16 line by 64 character example screen, with the chunky
graphics character 163 at positions (31,15), (32,15) and (33,15). The bat is moved to
the left by Cbat—1 > and to the right by {bat + 1}, which again will prevent the bat
from going off the screen.

The word {movbat} expects an ASCII code from the keyboard on top of the stack; if
it is the code for "z" then the ball is moved to the left, if it is "/" then the ball is
moved to the right, or if it is neither then the word {abort} halts execution. The
word {putbat} brings together the bat handling words:

32 CONSTANT "blank"

163 CONSTANT "bat"

: putbat

7TERMINAL

?DUP

IF

the

the

space char

bat char)

key pressed?

duplicate if

"blank" plotbat (

movbat (

"bat" plotbat (

erase the old bat)

move it left or right

and plot new bat)

THEN

The word {’terminal} is, not a FORTH-79 standard word, but most systems do
include it. {?terminal} checks to see if a key has been pressed and returns its ASCII
code on the stack if so, or zero otherwise. The word {putbat} therefore has no effect
if a key has not been pressed.

On computer systems with a 'joystick' device, {movbat} and {putbat} could be
re-defined to make use of this, resulting in a much more 'professional' game.

The following 'test' definition is useful:

testbat

c l rs

"bat"

BEGIN

0 UNTIL

plotbat

putbat

clear screen

plot bat)

move

loop

it?)

till ABORTed

Typing {testbat} will clear the display and draw a bat, which may be moved with
the "z" and "/" keys. Hitting any other key will ABORT the program, and return
control to the keyboard, (note that any game program using {putbat} will have this
ABORT facility built in). If your keyboard has a 'repeat'.key try holding it down
while hitting "z" or "/".

10.2.3 The Squash game
Blocks 113 and 114

The preliminary definitions in block 113 are mostly random 'ball' or 'bounce'

I 12

selection routines. They all rely upon the routine {random}, which is a standard
pseudo random number generator:

VARIABLE rnd

1234 rnd ! (initialise seed)

: random rnd 3 (fetch seed)

1021 * 41 + (1021*seed + 41)

DUP rnd ! ; (save new seed)

Every time the word {random} is executed a new random number is placed on the
stack, within the range -32768 to 32767, excluding 0. The sequence of random
numbers repeats itself every 65535 numbers, but that should not be a problem here!
Most of the time we only require a limited range of random numbers and the word
{>rand} will achieve this:

: >rand random U* SWAP DROP ;

Writing {n >rand} will result in a random number in the range 0 to n-1.

The word {newba 11} selects a value for {x} between 0 and 63, and sets {y} to zero, so
that the new ball starts somewhere on the top line of the display. In addition
{xstep} is set to 2,1,-2 or -2, and {ystep} to 1 or 2, to give the ball a random
downward direction.

{deflect} selects only values of {xstep} and {ystep} thus allowing the ball to be
deflected randomly, in an upward direction, when it hits the bat.

The remaining words in block 113 are preliminary definitions to simplify the final
definition of {squash}. The words {hitmiddle} and {hitlr} return the flag 'true' if
the ball hit the bat in the middle, or on the left or right sides, respectively,
{printscore} updates the score display by printing a carriage return, but not a line
feed, {13 emit}, to overwrite the last score printout.

Now that we have all of the ingredients, a definition for {squash} is very
straightforward and can be written by following the algorithm outlined in section
10.2:

: squash

c Irs

0 sccre ! printscore

newba 11

BEGIN

"ball" xyplot

"bat" plntbat

ski ll 3 DO

putbat

LOOP

"blank" xyplot

xystep

xright xleft ytop

y 3 ymax > IF

hitmiddle IF
10 score

yreverse

ELSE

hitlr IF

(clear screen)

(zero score and print it)

(generate a new ball)

(plot ball)

(and bat)

(move the bat?)

(erase the ball)

(move it)

(bounce off top and sides)

(ball on baseline or below it?)

(hit the bat middle?)

+! (+10 points)

(and bounce)

(hit left or right)

20 score +! (+20 points)

I 13

def led (def Led ball)
ELSE (bat has missed ball)

-5 score +!

newba 11

(-5 points .)

(serve newba 11)

THEN

THEN

printscore (update score)

THEN

0 UNTIL ; (loop till ABORTed)

There is only one 'improvement' to the original algorithm, which is that {putbat} is

inside a loop which repeats {skill} times. This has two effects, one is that it slows

the game down to a manageable speed, the other is that for each ball position the

keyboard is checked {ski 11} times for the "z" or "/" bat movement keys. With a

skill value of 400 the game is quite easy, 300 is moderately difficult, and 200

hairaising! The object is, therefore, to achieve a positive score with as low a {ski 11}

rating as possible.

10.2.4 The Videogame Vocabulary blocks listed

110 LIST

0 (Video game vocabulary, basic plotting routines)

1 FORTH DEFINITIONS (set up a new vocabulary)

2 VOCABULARY videogames videogames DEFINITIONS

3 HEX F000 CONSTANT vdust (system dependent constants)

4 DECIMAL 80 CONSTANT width 25 CONSTANT height

5 : coord width * + vdust + ; (x y -» addr)

6 : plot coord C! ; (char x y ->)

7 width 1 - CONSTANT xmax height 1 - CONSTANT ymax

8 VARIABLE x VARIABLE y (x runs 0-xmax, y runs 0-ymax)

9 : xycheck x a 0 MAX x ! (check)

10 x 3 xmax MIN x ! (screen)

11 y 3 0 MAX y ! (boundaries)

12 y 3 ymax MIN y ! ;

13 (plot char at position x,y with boundary checks)

14 : xyplot xycheck x a y a plot ; (char —)

15 111 LOAD 112 LOAD 113 LOAD 114 LOAD (load the rest)

111 LIST

0 (Videogame vocabulary, bouncing ball routines)

1 VARIABLE xstep VARIABLE ystep (change in position)

2 : xystep xstep 3 x +! ystep a y +! ; (change x and y)

3 : xreverse xstep 3 NEGATE xstep ! ; (reverse direction of x)

4 : yreverse ystep a NEGATE ystep ! ; (and y)

5 : xleft x a 0< IF xreverse THEN ; (check for edges)

6 : xright x a xmax > IF xreverse THEN ; (and BOUNCE)

7 : ytop y a 0< IF yreverse THEN ;

8 : ybottom y a ymax > IF yreverse THEN ;

9 : clrs 12 EMIT ; (clear screen) 192 CONSTANT "ball"

10 (Test program, bounce around the screen)

11 0 x ! 0 y ! 1 xstep ! 1 ystep ! (start in top left)

12 : pattern clrs 0 DO (clear screen)

13 "ball" xyplot (plot the ball)

14 xystep xleft xright ytop ybottom

15 LOOP ; (n ->)

112 LIST

0 (Videogame vocabulary, bat handling routines)

1 VARIABLE bat width 2 / bat ! (bat position

plotbat DUP bat a 1- ymax plot (plot bat on

DUP bat S ymax plot

bat a 1+ ymax plot ;

3 xmax 1- LITERAL

a
bat + 1

bat-1

movbat

bat

bat

2
3

4
5

6
7

8
9

10 32 CONSTANT "blank

11 : putbat

12

DUP 122 = IF

DUP 47 = IF

13

< IF 1 bat +!

1 > IF -1 bat

DROP bat-1 ELSE ("2"

DROP bat+1 ELSE (

ABORT THEN THEN ; (

163 CONSTANT "bat"

7TERMINAL ?DUP IF (move bat if

"blank" plotbat movbat

THEN ;

on baseline)

bottom line)

(char ->)

THEN ;

+! THEN ;

= bat left)

= bat right)

else abort)

keypressed)

"bat" plotbat

14 (Test bat handling)

15 : testbat clrs "bat" plotbat BEGIN putbat 0 UNTIL ;

113 LIST

0 (Videogame vocabulary, squash pre limi maries)

1 VARIABLE rnd 1234 rnd ! (random number seed)

2 : random rnd a 1021 * 41 + DUP rnd ! ; (-► n)

3 : >rand random U* SWAP DROP / (-> n)

4 (set xstep to either -2, -1, 1 or 2)

5 : rxstep 4 >rand 1- DUP 0> NOT IF 1- THEN xstep ! ;

6 (serve a random new ball)

7 : newba l L 64 >rand x ! 0 y ! (set x and y)

8 2 >rand 1+ ystep ! rxstep ; (ystep, xstep)

9 (def lect the ball off the bat at random)

10 : def lect 2 >rand 2- ystep ! rxstep ;

12 : hitmiddle bat a x a = ; (-> flag)

13 : hi t Ir bat a 1- x a = bat a 1+ x a = OR ; (-> flag)

14 VARIABLE skill 300 skill ! VARIABLE score 0 scire !

15 : printscore 13 EMIT Score - " score a 5 .R ;

114 LIST

(Videogame vocabulary, solo squash)

: squash

clrs 0 score ! printscore

newba 11

BEGIN

"ball" xyplot "bat" plotbat

skill a 0 DO putbat LOOP

"blank" xyplot

y a ymax > IF

hitmiddLe

hi 11 r

(initialise screen)

(set up a new ball)

(plot ball and bat)

(delay and move bat)

xystep xright xleft ytop (move)

(has ball hit baseline)

IF 10 score +! yreverse ELSE

IF 5 score +! deflect Ei.SE

-5 score +! newball

THEN THEN

(put up new score)

0 UNTIL

pri ntscore

THEN

(Loop till we breakout of putbat)

I 15

Bibliography

The following is a list of books, articles and papers on the language FORTH.

1. Moore, C.H. and Rather, E.D., "The FORTH program for spectral line
observing", Proc. IEEE, vol 61, September 1973.

2. Moore, C.H. and Rather, E.D., "FORTH: A new way to program a mini¬
computer", Astron. Astrophys. suppl. 15, 1974.

3. James, J.S., "FORTH on microcomputers". Dr. Dobbs, no 26.

4. Rather, E., Brodie, L., Rosenberg, C., "Using FORTH, FORTH-79 standard
edition", FORTH Inc., 1979.

*5. Moore, C.H., "The Evolution of FORTH, an unusual language". Byte, August
1980, pp76-92.

6. The FORTH Standards Team, "FORTH-79", 1980, distributed by the FORTH
Interest Group, P.O. Box 1105, San Carlos, CA 94070, USA.

7. Fritzon, R., "Write your own pseudo-FORTH compiler", Micro-computing, Feb
1981, pp76-92 and Mar 1981, pp44-57.

8. Loeliger, R.G. "Threaded interpretive languages". Byte Books, 1981.

9. Katzan, H., "Invitation to FORTH", Petrocelli, 1981.

10. Brodie, L„ "Starting FORTH", FORTH Inc., 1981.

11. Knecht, K., "Introduction to FORTH", Sams, 1982.

Answers to problems in Chapters 1-5

Chapter 1

12 + 34- *

10 100 9 / + 5 +

23456 + ***

(20+10)/(20—10)

1+2+3+4

2 0—(1 * 2)

3.

100 -200 ABS MAX

empty 100 -200 200 200

100 100

overall stack effect: (- 200)

-10000 0 MIN NEGATE

empty -10000 0 - 10000 10000

-10000

overall stack effect: (- 10000)

1 2 SWAP OVER

empty 1 2 1 2

1 2 1

2

overall stack effect: (- 2 1 2)

10 DUP DUP * *

empty 10 10 10 100 1000

10 10 10

10

overall stack effect: (
- 1000)

10 20 30 40 3 PICK

empty 10 20 30 40 3 20

10 20 30 40 40

10 20 30 30

10 20 20

10 10

overall stack effect: (—» 10 20 30 60)

60

30

20

10

117

4.
A good way of duplicating the top two numbers on the stack is by using the two
operations {OVER OVER}. For example:

input: OVER OVER

stack: 20 10 20

10 20 10

10 20

10

So to find the sum, difference, product and quotient of the same two numbers, the
following sequence will work:

10 20 ok

OVER OVER + . JO Ok

OVER OVER - . -10 ok

OVER -OVER * . 200 ok

OVER OVER / . 0 ok

In case the final result seems odd, don't forget that in integer division 10/20 = 0
remainder 10.

Chapter 2

1.

10 CONSTANT ten

ten 4 * 1 + CONSTANT fred

VARIABLE XYZ -100 XYZ !

VARIABLE A XYZ 3 fred - A !

3.
The first solution that comes to mind is:

i x a + xaxa* + x!

But a shorter way of squaring a variable is to use {dup>:

x a dup *

Additionally the original expression looks like:

LET X = X + .

therefore we can use the special operation {+!}:

x a dup * 1 + x +!

for a minimal solution?

4.

a x a DUP * * b x a * + c+

5.
If your computer should have an output device 'memory mapped' into memory
location 1000, say, then typing:

1000 CONSTANT device ok

will allow you to send output to the device by typing:

1 device ! ok

as if the 'device' were a variable. Caution — don't try this with the value '1000 , you
might corrupt an important memory location.

Chapter 3

1.

: triple 3 * ;

If a faster solution is required (at the expense of dictionary space) try the following:

: triple DUP DUP + + ;

This is faster because 'addition' is much faster than 'multiplication'.

2.

: newpage
12 EMIT (print form feed)

Page - " (page heading)

. CR ; (and page number)

3.

CREATE array —10 , 1 , 10 , 1000 ,

: array 2 * array + ;

Notice that by using the same name for the array address calculating definition, as
for the array itself, we effectively 'hide' the array so that it is only accessible through
its address calculation routine.

4.

: doublearray
0 array 3 2 * 0 array ! (double element 0)

1 array 3 2 * 1 array ! (double element 1)

2 array 3 2 * 2 array ! (double element 2)

3 array 3 2 * 3 array ! (double element 3) ;

With a DO loop (see Chapter 5) we can achieve the same with a more compact
definition:

: doublearray

4 0 DO

I array 3 2 * I array !

LOOP ;

4.

yord s tack effect

DUP < n 1 n2 -> nl n2 n2) Dup licate top value

* < n 1 n2 n2 —> nl n 3) n3: =n2*n2

SWAP (n 1 n3 -> n3 nl)

DUP < n 3 nl —> n3 nl nl) Dup licate again

* < n 3 nl nl -> n3 n4) n4:=n1*n1

+ Cn3 n4 —» n 5) n5: =n3 + n4

Therefore the overall effect of {example} is to square each of the two values on the
stack, and add the results:

example (n1 n2 - n5) n5:=n1*n1 + n2*n2

Chapter 4

1.

uord stack effect

1 (1)

2 (1 -> 1 2)
> (1 2 -* 0) 1 is not greater than 2, so flag

-4 (-* -4)

is set to 'false'

0< (—4 -> 1) -4 is less than 0 so result is 'true'

5 (-* 5)

0> (5 -> 1) 'true'

NOT (1 ^ 0) 'false'

2.

: SIGN DUP 0> IF

positive

ELSE

DUP 0= IF

zero"

ELSE

negative"

THEN

THEN ; (i number is preserved)

3.

1101101 X0R 1010001 = 0111100

1010 OR 101 = 1111

uord stack effect

4 (-* 4)

5 (-*45)
= (4 5 -> 0) 4 does not equal 5

2 (0 -» 0 2)

3 (0 2 -> 0 2 3)

< (0 2 3 -> 0 1) 2 is less than 3

OR (01^1) result is 1

4.

a a 2 = B a 2 = AND NOT IF 4 A ! THEN

5.
{0=} will have exactly the same effect as {NOT} upon a flag value, but {NOT} will not

have the same effect as {0 = } upon a number.

6.
The phrase {over over} in exl suggests that there should be two values on the stack

120

initially (see Chapter 1, question 4 above).

word stack effect

OVER (n 1 n2 -> nl n2 nl)

OVER (nl n2 nl -> nl n2 nl n2)

> (nl n2 nl n2 -> nl n2 flag) true if n1>n2

IF (nl n2 flag -» nl n2>

SWAP (nl n2 -> n2 nl) only SWAP if n1>n2

THEN

DROP (n2 nl -> n2) if nl>n2

(nl n2 -> nl) if not

Thus the overall effect is to leave the lesser of the two values on the stack - i.e. the
same as {mint.

The initial {dup> in ex2 requires one stack value.

uord stack effect

DUP (n -> n n)

IF (n n -> n)

DUP (n -> n n) duplicate only if non-zero

THEN

Thus the overall stack effect is to duplicate the number on top of the stack only if it
is non-zero - i.e. the same as {?dup>.

Chapter 5

1.

: stars

CR

DUP 0 DO

DUP 0 DO

LOOP

CR

LOOP ;

(initial newline)

(set up outer loop)

(and inner loop with same Limit)

(print a star)

(newline)

: sumalL

0
SWAP 1+

ROT

DO

I +

LOOP ;

(accumulator to zero)

(add 1 to limit)

(index to top of stack)

(add up numbers)

(Leave sum on stack)

3.

: delay 1000 0 DO LOOP ;

: countdown

0 SWAP

DO

I .

delay

-1 +L00P

." We have liftoff!!

(delay approx 1 second)

(swap index and limit values)

(print countdown)

(and delay)

121

4.

exl 0 3 6 9 12 15 ok

ex2 10 9 8 7 6 5 A 3 2 1 0 ok

ex3 5 10 15 20 25 ... 95 100 ok

5.
Decide initially on the input of parameters, i.e.

0 20 3 divisible

to print all numbers between 0 and 20 inclusive which are exactly divisible by 3.

: divisible
ROT ROT

SWAP 1+ SWAP

00

0UP

I

SWAP MOD

0= IF

I .

THEN

LOOP DROP ;

(get index and limit to top of stack)

(add 1 to limit)

(and loop)

(duplicate divisor)

(number to test)

(divide for remainder)

(remainder = 0?)

(number is divisible if so)

(clear stack)

0 20 3 divisible 3 6 9 12 75 18 ok

6.

: DUMP

BEGIN

CR

8 0 DO (loop through 8 lines)

DUP 6 .R SPACE (print address)

8 0 DO

DUP CS 3 .R SPACE 1+ (print bytes)

LOOP

CR

LOOP

KEY 32 - (get a keypress)

UNTIL (loop if space)

DROP ; (e l se exit)

(See Chapter 8.4 for a definition of -C. R>.)

122

Glossary of FORTH terminology
The intention of this glossary is to explain any terminology used, but not
necessarily explained, in the main text of the book.

Address
A 16 bit value which represents the address of a byte in memory.

ASCII

'American Standard Code for Information Interchange' - the code used by the
majority of computers for representing characters as byte values. The following
table lists each character together with its byte value in decimal, and hexadecimal.

Char Dec Hex Char Dec Hex Char Dec Hex Char ■ Dec Hex
NUL 0 00 SPACE 32 20 @ 64 40 i 96 60
SOH 1 01 | 33 21 A 65 41 a 97 61
STX 2 02 " 34 22 B 66 42 b 98 62
ETX 3 03 # 35 23 C 67 43 c 99 63
EOT 4 04 $ 36 24 D 68 44 d 100 64
ENQ 5 05 X 37 25 E 69 45 e 101 65
ACK 6 06 8 38 26 F 70 46 f 102 66
BEL 7 07 1 39 27 G 71 47 g 103 67
BS 8 08 (40 28 H 72 48 h 104 68
HT 9 09) 41 29 I 73 49 i 105 69
LF 10 0A * 42 2A J 74 4A j 106 6A
VT 11 06 + 43 2B K 75 4B k 107 6B
FF 12 OC / 44 2 C L 76 4C l 108 6C
CR 13 0D - 45 2D M 77 4D m 109 6D
SO 14 0E 46 2E N 78 4E n 110 6E
SI 15 OF / 47 2 F 0 79 4 F 0 111 6 F
DLE 16 10 0 48 30 P 80 50 P 112 70
0C1 17 11 1 49 31 Q 81 51 P 113 71
DC2 18 12 2 50 32 R 82 52 r 114 72
DC3 19 13 3 51 33 S 83 53 s 115 73
DC4 20 14 4 52 34 T 84 54 t 116 74
NAK 21 15 5 53 35 U 85 55 u 117 75
SYN 22 16 6 54 36 V 86 56 V 118 76
ETB 23 17 7 55 37 W 87 57 w 119 77
CAN 24 18 8 56 38 X 88 58 X 120 78
EH 25 19 9 57 39 Y 89 59 y 121 79
SUB 26 1 A 58 3A Z 90 5A z 122 7A
ESC 27 IB / 59 3B [91 5B > 123 7B
FS 28 1C < 60 3 C \ 92 5C 1 124 7C
GS 29 ID = 61 3D 1 93 5 D { 125 7D
RS 30 IE > 62 3 E t 94 5 E

~
126 7E

US 31 IF 7 63 3 F _ 95 5 F DEL 127 7 F

All characters in the left hand column (and DEL) are 'control characters'. Very few
computers implement all of these, but the common ones are:

BEL = ring the 1 be U1

BS = ’backspace’ one character

HT = ’horizontal tab’ - move to the start of the next column
LF = ’line feed’

FF = ’form feed’ - clear the screen and start a new page

CR = ’carriage return’ - move to the start of the line

123

Assembler
Assembler is the basic machine language of the microprocessor at the heart of any

microcomputer system. Assembler is normally expressed symbolically using a set

of mnemonic instructions specified by the manufacturer of the microprocessor,

thus, for example, 8080 assembler is quite different to 6502 assembler even though

microcomputers using these devices might run the same dialect of BASIC or

FORTH. Advanced FORTH systems allow symbolic assembler to be embedded into

FORTH applications using an ASSEMBLER vocabulary - specially written for the

microprocessor running the FORTH system. Definitions incorporating assembler

are known as CODE definitions and have a structure similar to a Colon Definition.

For example, a CODE definition of a word to double the number on the stack might

be written for an 8080-based machine as follows:

CODE DOUBLE

POPHL CALL,

H DAD,

PUSHHL JMP,

END-CODE

(new definition called DOUBLE)

(fetch top of stack to HL)

(add HL to itself)

(and push back result)

Notice that the 8080 assembler instructions are written operand first, mnemonic

second. Code definitions are used to speed up time critical parts of a program, but

suffer the disadvantage that they require the programmer to understand the

assembly language of his microprocessor and the resulting FORTH applications

may not run on other systems.

Binary
Base two.

Boolean
A numerical value representing one of the two logical states 'true' or 'false'. Also

known as a 'flag'. In FORTH any 16 bit number may be treated as a Boolean, in

which case non-zero values are 'true', zero is 'false'.

Byte
An 8 bit value. FORTH normally handles 16 bit numbers on the stack, thus byte

values are represented as 16 bit numbers with the top 8 bits set to zero.

Character
A 7 bit value which represents a character in the ASCII standard. When contained

in a larger number the upper bit(s) are set to zero.

Compiling word
A word which, when included inside a colon definition, has both a compile-time

action and a run-time action. Examples of compiling words are {IF> {else} {then}

{DO} {LOOP} {+ LOOP} {BEGIN} {UNTIL} {WHILE} and {LITERAL}.

Data stack
Same as 'Normal stack'.

Defining word
A word that, when executed, creates a new dictionary entry. The next word in the

input stream is taken as the name of the new dictionary entry. Examples of defining

words are {;} {create} {variable} {constant} and {vocabulary}.

Dictionary
The structure which contains all word definitions including both 'system'

124

(predefined) words and user defined words, in compiled form in memory.

Individual dictionary entries are named and are referenced by name.

Fixed-point number
The technique which is usually adopted by the FORTH programmer for

representing decimal or 'real' numbers by asuming a fixed position decimal point.

For example, if the decimal point is fixed two places to the left then a 1 on the stack

represents the fixed-point number 0.01, or 1234 represents 12.34.

Flag
Same as Boolean.

Hexadecimal
Base sixteen, using the digits 0 to 9 and A, B, C, D, E, F.

Immediate
A word which will execute rather than compile, during the compilation of a colon

definition. Immediate words are {'} 1(1 {."1 1;) 1ooes>1 {forth} {Cl and

{{COMPILE]} together with all compiling words.

Infix
The term used by computer scientists to describe the normal convention for writing

arithmetic expressions in which the operators are fixed in between the numbers.

For example 5 multiplied by 10 is written 5 * 10.

Input stream
The sequence of characters currently being interpreted. These may come from

either the keyboard (through the terminal input buffer) or from disk or cassette

(through a block buffer). The values of {>IN1 and {BUG determine which of these is

the current input stream.

Integer
The term used by computer scientists to refer to a 'whole' number (i.e. -1, 27, -342),

as distinct from a decimal or 'real' number (i.e. 33.42, -0.047).

Literal
In FORTH terminology a 'literal' is a number appearing inside a colon definition

which represents only the number itself (that is the number has not been defined as

the name of a high level definition).

Normal stack
Also known as 'data stack', 'parameter stack' or simply 'stack'. A last-in, first-out

buffer to contain 16 bit values. This stack is used for arithmetic and general

purposes; most FORTH operations pop input values off the stack, and push results

back onto the stack. Stack values may represent any number type, see 'Number'.

Number
FORTH has operations to manipulate the following number 'types':

type range

Bi t 0

Character (char) 0

Byte (byte) 0

Number (n) _

Unsigned number (un) 0

Double number (d) -

or 1

... 127

... 255

32,786 ... 32,767

... 65,535

2,147,483,648 ... 2,147,483,647

125

Unsigned double number (ud) 0 ... 4,294,967,295

(The abbreviation in brackets is that used in the shorthand stack notation used
throughout this book).

Double numbers are represented on the stack as two 16 bit values, with the upper

16 bit half above the lower 16 bit half. All other number types are represented on

the stack as a single 16 bit value with high order bits set to zero when representing
character or byte.

Parameter stack
Same as 'Normal stack'.

Pop
The operation of retrieving a number from the top of the stack.

Postfix

The same as 'Reverse Polish Notation', in which arithmetic expressions are written

with the operators after the numbers on which they operate. For example 5

multiplied by 10 is written as 5 10 *. Postfix expressions may be directly evaluated

using a stack, and all FORTH arithmetic must be written using postfix notation.

Push
The operation of saving a number on a stack.

RAM
Random Access Memory. Semiconductor memory which may be both read from

and written into (changed), as distinct from ROM (Read Only Memory) which

cannot be written into by a program. FORTH systems normally run in RAM.

Return stack
A stack reserved primarily for holding the 'return addresses' of words currently
being executed.

Reverse Polish Notation
Same as 'Postfix' notation.

Stack
A special buffer for storing numbers such that the last number to be stored

(pushed) will be retrieved (popped) first. FORTH maintains two stacks, the 'normal
stack' and the 'return stack'.

String
The term given to a list of byte values in memory which represent, in ASCII, a
number of characters of text.

Two's complement arithmetic
FORTH represents signed single length and double length numbers using two's

complement notation. Thus the topmost bit indicates the sign of the number; 0

means positive and 1 means negative. Taking single length (16 bit) numbers as
examples,

0000000000000000

is, expressed in binary, the smallest positive number (decimal 0), and

0111111111111111

is the largest positive number (decimal 32,767). Whereas

126

1000000000000000

is the lowest negative number (decimal -32,768), and

1111111111111111

represents the decimal value -1.

To calculate the binary value of a negative number in two's complement notation

take its magnitude (absolute value) in binary, invert each bit, and finally add one.

For example,

decimal + 2 = 0000000000000010

inverted = 1111111111111101

add one = 1111111111111110

which is the two's complement representation of decimal -2, in binary.

The same procedure is used to convert a negative binary number into its decimal

equivalent, for example,

in binary, 1111111111111000

inverted = 0000000000000111

add one = 0000000000001000 = decimal +8

and so the original binary number represented the decimal value -8.

Two's complement arithmetic is useful because it allows us to subtract by adding.

For example, to subtract decimal 8 from decimal 2, add the two s complement

representations of -8 and +2,

decimal +2 = 0000000000000010

decimal -8 = 1111111111111000

sum = 1111111111111010

which represents the correct result decimal -6. Notice that the sign of the result is

automatically correct.

Vocabulary
A named subset of the dictionary. A number of different vocabularies may co-exist

in the dictionary, all linked into the primary FORTH vocabulary.

Word
In FORTH terminology a WORD is any sequence of characters in the input stream

delimited by 'space' characters on either side. This is different to the normal

computer terminology of 'word=16 bit binary number'. In FORTH a 16 bit quantity

is always referred to as a NUMBER, ADDRESS or sometimes a CELL.

127

INDEX

This index lists the complete FORTH-79 standard word set, together with the

recommended pronunciation where it is not obvious, and the number of the page

containing the full formal description of the word. An informal description, with

examples, will in most cases be found in the preceding chapter.

! "store" 17
“sharp" 85
#> “sharp-greater" 85
#S “sharp-s" 85
' "tick” 100
(“paren" 29
* “times" 9
*/ "times-divide" 84
*/mod "times-divide-mod" 84
+ “plus" 9
+ ! "plus-store" 18
+ LOOP “plus loop" 49
, "comma" 29
- "minus" 9
-trailing “dash-trailing" 73
. "dot" 10

"dot-quote" 29
/ “divide” 9
/mod "divide-mod" 9
0= “zero-equals" 37
0> “zero-greater" 37
1+ “one-plus" 28
1- "one-minus" 28
2+ “two-plus" 28
2- "two-minus" 28
79-STANDARD 85
: “colon” 29
; “semi-colon" 29
< “less-than” 37
<# "less-sharp" 85
- “equals" 37
> “greater-than" 37
>in "to-in" 74
>R “to-r” 84
? "question-mark" 18
?DUP "query-dup" 37
a “fetch" 17
ABORT 50
abs "absolute" 9
ALLOT 29
AND 38
BASE 73
BEGIN 49
blk “b-l-k" 63

128

BLOCK

BUFFER

C! "c-store"
ca "c-fetch"
cmove “c-move"
COMPILE

CONSTANT

CONTEXT

CONVERT

COUNT

CR "c-r"
CREATE

CURRENT

D+ "d-plus"
o< "d-less-than"
DECIMAL

DEFINITIONS

DEPTH

dnegate "d-negate"
DO

does> "does"
DROP

dup "dupe"
ELSE

EMIT

EMPTY-BUFFERS

EXECUTE

EXIT

EXPECT

FILL

FIND

FORGET

FORTH

HERE

HOLD

I

IF

IMMEDIATE

J

KEY

LEAVE

LIST

LITERAL

LOAD

LOOP

max "max"
MIN "min"
mod "mod"
MOVE

NEGATE

62
63
18
18

74
101

18
64
73
73
10
29
64
84
84
73
64
28
84
49
99

8
8

38
72
63

101
101
73
74
100

18
64

74
85
49
38

101
49
50
49
62

101
62
49

9
9
9

63
9

129

NOT 37
OR 38
OVER 9
PAD 63
PICK 9
QUERY 73
QUIT 50
R> "r-from" 84
Ra "r-fetch" 84
REPEAT 50
ROLL 9
rot "rote" 9
SAVE-BUFFERS 63
scr "s-c-r" 62
SIGN 85
SPACE 73
SPACES 73
STATE 101
SWAP 9
THEN 38
TYPE 73
u* "u-times" 84
u. "u-dot" 10
u/mod "u-divide-mod" 84
u< "u-less-than" 37
UNTIL 50
UPDATE 63
VARIABLE 18
VOCABULARY 63
WHILE 50
WORD 73
xor “x-or" 38
["left-bracket" 101
CCOMPile] "bracket-compile" 10 1
] "right-bracket" 10!

130

FORTH- 79
Handy Reference

Stack notation: (normal stack before —* normal stack after)

Operand key: n,nl .. 16 bit value

d,dl .. 32 bit value

addr .. 16 bit address

byte .. 16 bit value whose lower 8 bits only are set or used by the
operation

char .. 16 bit value whose lower 7 bits only are set or used by the

operation, representing an ASCII character

flag .. 16 bit value representing a Boolean flag, a zero value = 'false',

a non-zero value = 'true'
u . . the prefix denoting an unsigned number

Stack Manipulation:
DUP (n —» n n) Duplicate top of stack
DROP (n -») Lose top of stack
SWAP (nl n2 —* n2 nl) Reverse top two stack items
OVER (nl n2 —> nl n2 nl) Duplicate second item on top
ROT (nl n2 n3 —* n2 n3 nl) Rotate third item to top
PICK (nl —> n2) Duplicate nlth item on top of stack
ROLL (n ->) Rotate nth item to top
?DUP (n n (n)) Duplicate only if non-zero
DEPTH (-» n) Count number of items on stack
>R (n ->) Move top item to return stack
R> (-» n) Retrieve item from return stack
R(» (— n) Copy top of return stack

Comparison:
< (nl n2 —> flag) True if nl less than n2
- (nl n2 —> flag) True if nl equals n2
> (nl n2 —» flag) True if nl greater than n2
0< (n -> flag) True if n negative
0 = (n flag) True if n is zero
0> (n -► flag) True if n greater than zero
D< (dl d2 — flag) True if dl less than d2
U< (uni un2 -* flag) Compare as unsigned integers
NOT (flag -» -flag) Reverse truth value

Arithmetic and logical:
+ (nl n2 —> sum)

- (nl n2 —> diff)

* (nl n2 —> prod)

/ (nl n2 —> quot)

MOO (nl n2 —> rem)

/MOD (nl n2 —» rem quot)

1 + (n —* n+1)

1- (n -» n-1)

2 + (n —> n+2)

2- (n -> n-2)

D + (dl d2 —> dsum)

/ (nl n2 n3 — quot)

*/M0D (nl n2 n3 —> rem quot)

U* (uni un2 —* ud)

U/MOD (ud un —> urem uquot)

MAX (nl n2 —> max)

MIN (nl n2 —> min)

ABS (n — |n|)

NEGATE (n -» -n)

DNEGATE (d -d)

AND (nl n2 —» and)

OR (nl n2 —* or)

XOR (nl n2 —> xor)

Memory:

J§ (addr —» n)
1 (n addr —>)

c@ (addr —> byte)

C! (byte addr —>)

? (addr —*)

+! (n addr —>)

MOVE (addrl addr2 n —*)

CMOVE (addrl addr2 n —*)

FILL (addr n byte —>)

Control Structures:
DO (end+l start —»)

LOOP (-)
+ L00P (n ->)

I (-» n)
J (-» n)
LEAVE (-)
IF (flag -»)
ELSE (-)
THEN (-)

BEGIN (-)

UNTIL (flag ->)
WHILE (flag -»)
REPEAT (-)
EXIT (-)
EXECUTE (addr —*■)

Add
Subtract (nl-n2)
Multiply
Divide (nl/n2), quotient rounded toward zero
Remainder from (nl/n2), rem has sign of nl
Divide with remainder and quotient
Add 1
Subtract 1
Add 2
Subtract 2
Double precision add
(nl*n2/n3) with double precision intermediate
As */ with remainder and quotient
Multiply with double result, all unsigned
Divide double number by single, all unsigned)
Compare nl with n2 and leave the greater
Compare nl with n2 and leave the lesser
Absolute value
Change sign (2's complement)
Change sign of double number
Bitwise logical AND
Bitwise logical OR
Bitwise logical XOR

Replace address by number at address
Store n at address
Replace address by byte at address
Store byte at address
Print the number stored at address
Add n into the number stored at address
Move n numbers starting at addrl to addr2
Move n bytes starting at addrl to addr2
Fill n bytes of memory starting at addr

Set up DO .. LOOP or +LOOP given index
range
Add one to index, exit loop when index>end
Add n to index, exit loop when index>end for
n>0, or when index=end for n<0
Place current loop index value onto stack
Place index value for next outer loop onto stack
Force DO loop termination
Construction: IF ..true.. THEN
or IF ..true.. ELSE ..false.. THEN,
execute true or false words according to flag
value at IF
Mark the start of an UNTIL loop or a WHILE
loop
In BEGIN .. UNTIL, loop until flag is true
In BEGIN .. WHILE .. REPEAT construct,
loop while flag true at WHILE
Prematurely exit this colon definition
Execute word whose compilation address is at
addr

Character input-output:
CR (-) Print carriage return and line feed

EMIT (char —>) Print character

SPACE (-) Print one space

SPACES (n ->) Print n spaces

text" (-) Print text delimited by "

TYPE (addr n —>) Print the string of n characters at address

COUNT (addr —* addr+1 n) Fetch count byte n and point to string

-TRAILING (addr nl —> addr n2) Reduce character count by trailing spaces

KEY (char) Read a single character from the keyboard

EXPECT (addr n —>) Read n characters (or until return) from

QUERY (-)

keyboard into memory at address

Read 80 characters (or until return) from

WORD (char —»• addr)

keyboard into input buffer
Read next word from input stream using char

Number input-output:

as delimiter. Leave address of length byte

BASE (—» addr) System variable containing current base

DECIMAL (-) Set base to decimal

(n -») Print n with one trailing space

U. (un ->) Print unsigned with one trailing space

CONVERT (dl addrl —» d2 addr2) Convert string at addrl+1 to double number,

<# (-)

add into dl leaving result d2
Begin a formatted number conversion

(udl —> ud2) Convert next digit of udl and HOLD it

#S (ud -► 0 0) Convert and HOLD all remaining significant

HOLD (char —»)

digits
Insert character into formatted string

SIGN (n ud —* ud) HOLD minus sign only if n is negative

#> (ud —> addr n) Drop ud and prepare string for TYPE

Mass storage input-output:
LIST (n ->) List block n and set SCR to n

LOAD (n -*) Interpret block n, then resume normal input

SCR (—» addr) System variable containing listed block

BLOCK (n —> addr)

number
Leave address of block n, reading block off

UPDATE (-)

storage if necessary
Mark last block accessed as updated

BUFFER (n —> addr) Assign a free buffer to block n, leaving its

SAVE-BUFFERS (-)

address
Write all updated blocks to storage

EMPTY-BUFFERS (->) Mark all buffers as empty

Defining words:
: <name> < -*) Begin colon definition of <name>

/ (-) End colon definition

VARIABLE <name> (-) Define variable <name>.

<name> (—* addr) returns its address when executed

CONSTANT <name> (-» n) Define constant <name> with value n.

<name> (-> n) returns its value when executed

VOCABULARY <name> (-») Define a vocabulary <name>, becomes

CREATE <name> (-)

CONTEXT vocabulary when executed
Create an empty dictionary entry <name>,

<name> (—> addr) returns parameter field address when

DOES> (—> addr)

executed
Used in defining new defining-words

Vocabularies:
CONTEXT

CURRENT

FORTH

DEFINITIONS

' <name>

FIND

FORGET <name>

Compiler:
i

ALLOT

IMMEDIATE

LITERAL

STATE

[

]

COMPILE

[COMPILE]

Miscellaneous:
(
HERE

PAD

>IN

BLK

ABORT

QUIT

79-STANDARD

Based on material
Carlos, CA 94070,

(—» addr)

(—* addr)

(-)

(-)
(—* addr)

(—» addr)

(-)

Variable pointing to vocabulary, for word
searches
Variable pointing to vocabulary for new
definitions
Set CONTEXT to the main FORTH vocabulary
Set CURRENT vocabulary to CONTEXT
Find address of <name> in dictionary
Find compilation address of next word in input
stream
Forget all definitions back to <name>

(n -») Compile n into the dictionary
(n ->) Add n bytes to the parameter field of the most

recently defined word

(-») Mark most recently defined word as
immediate

(n ->) Compile n as a literal
(-» addr) System variable is non-zero during

compilation •

(—») Stop compiling input stream and start
executing

(—>) Stop executing input stream and start
compiling

(—>) Compile the address of the following word
(-*) Compile the following word, even if

immediate

(-)
(—> addr)

(—> addr)

(—» addr)

(—» addr)

(-)

(-)

(->)

Begin comment, terminate by)
Address of next available dictionary location
Address of a 64 byte scratchpad area
Variable containing offset into input buffer
Variable containing block currently being
LOADed
Clear all stacks and return control to keyboard
As ABORT but leave normal stack intact
Verify that system conforms to FORTH-79

iroduced by the FORTH Standards Team, P.O. Box 1105, San
JSA.

about this book
FORTH is a new, unusual and exciting computer language. Originally developed to
control telescopes, it has since been applied in many diverse fields including the
animation sequences for ‘Star Wars’.

FORTH is a compact and fast language: faster than BASIC yet more flexible. It is
more than just a language: it is a programming language, editor, assembler and disk
operating system all rolled into one. In short, a complete ‘environment’. This book
describes the standard dialect of FORTH, together with numerous examples,
exercises and complete programs. Read it — you'll never use BASIC again!

Alan Winfield is a lecturer in the Department of Electronic Engineering at the
University of Hull. He specialises in Computer Languages for engineering and has
recently written a complete FORTH compiler.

About some of our other books

Computer Programs that Work (3rd Edn.) by J D Lee. G Beech. and T D Lee

Successful Software for Small Computers: Structured programming m BASIC to' Science
Business and Education by G. Beech.

Living with the Micro by M. Banks.

CP/M: The Software Bus by A. Clarke and D. Powys-Lybbe (Available June 1962

Broadwater Economics Simulations by G. Addis (Software package

Practical Programs: for the Acorn Atom and BBC Computer, by D Johnson-Dawes

Software Secrets: Input, Output and Data Storage Techniques by G Beech aoorovedby

Sharp Corporation, UK for the Sharp MZ-80K).

Byteing Deeper into your ZX81 by M. Harrison

Practical Pascal for Microcomputers by R Graham

Sharp Software Techniques: programming the MZ-80K by D Trowsoale and M Turner

UNIX — The Book by M. Banahan and A. Rutter.

Sigma Technical Press,
5 Alton Road,
Wilmslow,
Cheshire SK9 5DY,
United Kingdom.

£6.95

ISBN : 0 905104 22 6

