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Preface 
FORTH is an exciting computer language that was first developed in the early 
1970's for scientific applications, but not until recently has FORTH become widely 
available for microcomputers. Indeed, FORTH has emerged at a time in which 
microcomputers have 'come of age' and many users have gone beyond the 
tentative exploratory stages - and are programming for serious and demanding 
applications. 

Most of the existing languages suffer serious limitations; BASIC is too slow for 
many applications; yet assembler is not user-friendly, is difficult to learn, and 
worse still, is limited to one processor. FORTH overcomes all of these difficulties to 
provide a compact and friendly language, with fast execution. 

This book is a complete guide to FORTH programming. The first half of the book 
introduces the language through examples and frequent comparison with BASIC. 
The later chapters delve into some of the more unusual capabilities of FORTH, 
many of which have no equivalent in other languages. The FORTH-79 standard 
dialect of FORTH is adopted throughout the book, although common departures 
from this standard are detailed as footnotes. 

The book is intended for anyone who wishes to learn and use FORTH. Some 
familiarity with microcomputers and the language BASIC is assumed, but no prior 
knowledge of FORTH is required. The book should be equally well serve as a useful 
reference of ideas and techniques for practising FORTH programmers. 

I would like to acknowledge Charles Moore and Elizabeth Rather - the inventors of 
the language, and the FORTH Standards Team - the originators of the FORTH-79 
standard dialect used in this book. Grateful thanks are due to Graham Beech of 
Sigma Technical Press for suggesting the book, Ian Mitchell and Peter Cain for the 
technical proofing of the manuscript, and my better half Mary for putting up with 
me during its writing! 

Alan Winfield, 
Hull. 
January, 1983. 

FORTH is a registered trademark of FORTH, Inc. 
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We could even request a calendar for the whole year by typing simply: 

1982 year 

Having specified our ideal end result we must now write a FORTH program for 
each of the functions 'day', 'daysleft', 'month' and 'year'. The 'year' program 
would probably look something like this: 

: year 
12 0 DO ( loop for twelve months ) 

I OVER month ( print each month ) 

LOOP 

DROP 

/ 

The program has been placed inside a special FORTH structure called a 'Colon 
definition' and given the name 'year'. Providing that FORTH already recognises the 
word 'month', all of the above may be typed in, and will be compiled and added 
into FORTH, with the name 'year'. The 'year' program has now become a part of 
FORTH that may be run at any time by simply typing, for example: 

1982 year 

What could be easier! 

Of course, before typing in 'year', we must already have entered a program for 
'month'. Again, this will be in the form of a colon-definition: 

: month ... a FORTH program ... ; 

This time the program inside the colon definition is likely to be written entirely in 
standard FORTH and may be typed directly into a standard FORTH system. 

Don't worry if you do not understand the actual syntax of the examples given 
above or terms like 'compile'. All of this will be explained during the course of the 
book, including more detailed programs for the 'calendar' words above. The 
important message of this introduction is that the FORTH programmer builds a 
special 'vocabulary' of functions, (a calendar vocabulary in the example above). 
Simply typing one of the words in the vocabulary will cause the corresponding 
program to be run. The finished vocabulary may then be stored on disk or cassette. 

For the hobbyist and professional alike this is an interesting and refreshing 
alternative approach to programming. For the computer professional I will say 
more at the end of this introduction, but now a few words about this book. 

How best to read this book 
Like any new programming language FORTH must be learned from the ground 
floor up. There may be quite a few floors in the FORTH building, but the effort is 
exceedingly worthwhile, as I hope I showed earlier in this introduction! 
Nevertheless, FORTH is an interactive language, meaning that programs may be 
developed and tested 'at the keyboard', or, what is more useful at this stage, 
FORTH may be learned 'at the keyboard' as well. This means that as each new 
facility is explored we may actually try out the facility on a microcomputer running 
FORTH, and that is true right from the very beginning! 

This book is an ideal accompaniment to a brand new FORTH system running on 



your microcomputer, but don't worry if you do not have a microcomputer to hand, 
the examples will make sense anyway. Virtually all of the FORTH which appears 
throughout the text may be typed in, and accepted by most of the standard FORTH 
systems currently available. If your system conforms to the FORTH-79 standard 
(produced by the FORTH Standards Team), then all of the examples will run 
without modification. If not, you may have to consult the documentation for your 
system, to identify any differences. 

In all of the examples which are suitable for trying out on a FORTH system I have 
indicated the response from FORTH in italics. The part which you actually type in 
is not italicised. Apart from this, there are only two additional points to be 
remembered when talking to a FORTH system. These are: 

i) FORTH doesn't start to execute any of your typed input until after you hit 
'return'. This is a single key on the far right hand side of the keyboard, 
normally labelled 'return', or sometimes 'newline'. 
This is called 'buffered' input, and has the great advantage that if you make a 
typing error you are able to correct it by using the 'backspace' key. 

ii) FORTH likes each number, or symbol in the input to be separated by at least 
one space. 
The reason for this will be explained later. 

Rather than state these conventions each time an example occurs, we will just 
assume them, so that for example: 

I AM FORTH " I AH FORTH ok 

means that you typed i am forth" and then hit 'return', and FORTH responded 
by printing I ah forth ok. The final 'ok' is FORTH's way of saying "I've finished 
processing that line of input and I am ready for the next". 

Chapters one to five inclusive form a self contained introductory course in FORTH 
programming which requires only a basic familiarity with computer concepts and 
terminology. For readers familiar with BASIC, examples of FORTH and BASIC are 
given side by side where appropriate (and possible!). Also a short set of exercises is 
included at the end of each chapter, with full solutions at the end of the book. 

Chapter six covers the FORTH editing and disk (or cassette) handling operations. 
FORTH editors differ considerably from system to system and so this chapter 
presents only a typical set of editing operations. 

Chapters seven, eight and nine present a selection of some of the more exotic and 
sometimes obscure techniques of FORTH programming. The chapters are not 
essential reading for the absolute beginner to FORTH but are intended more as 
reference material for the practising FORTH programmer, who will, it is hoped, 
delve into these chapters for hints or ideas to incorporate into his own programs. 
The newcomer to FORTH is, nevertheless, recommended to1 skim through these 
chapters, to whet the appetite and to become aware of some of the more unusual 
capabilities of FORTH, many of which have no parallel in most other computer 
languages. 

Finally, chapter ten presents two major FORTH programs which are both 
interesting programs in themselves and provide examples of how a FORTH 
programmer approaches the design of large programs. 

x 



For Handy Reference 
Included in this book is a tear-out FORTH handy reference card, which gives very 

brief details of all of the words and symbols which FORTH recognises. In FORTH 

terminology this is called the 'Dictionary'. If you have a FORTH system on your 

micro-computer, it is unlikely that the dictionary is identical to the one in the handy 

reference, but they will probably be very similar. The notation used in the handy 

reference for summarising the action of each FORTH word, or symbol, may be 

confusing at first, but will be explained in some detail in chapter one. As soon as 

you start writing your own FORTH programs, which should be very shortly, you 

will find this handy reference invaluable. It is recommended that you should refer 

to this, when trying out examples as soon as possible after chapter one. Likewise, if 

any of the terminology needs clarification a glossary of FORTH terminology is 

included at the end of the book - which may be easier to use than digging up the 

appropriate section in the text. 

The remainder of this chapter is a summary of FORTH, for computer professionals. 

If you don't speak 'computerese' then you can easily skip this section and go 

straight into chapter one! 

For Computer Professionals 
By any standards FORTH is a most unusual computer language. Certainly FORTH 

has little in common with mainstream languages such as BASIC or Pascal. 

Nevertheless, FORTH is a high-level language; it embodies structured program¬ 

ming concepts, and FORTH programs are both modular and portable. At the same 

time, the FORTH programmer has access to primitive operations, or symbolic 

assembler if needed - so in some respects FORTH may be likened to a 

macro-assembler. 

A FORTH system is both an interpreter and compiler. Normally, all input to 

FORTH (which may come from either the keyboard, or backing storage), is 

interpreted and executed directly. However, if the same input is enclosed inside a 

colon-definition (as illustrated earlier in this introduction), then it is compiled into a 

compact threaded code. Thus, FORTH has the unusual feature of providing an 

interactive interpeter like environment for testing and debugging programs, which 

is friendly and easy to use, but at the same time the final programs are truly 

compiled and therefore fast and efficient. Runtime speeds comparable to compiled 

Pascal, or better than ten times faster than interpreted BASIC, can easily be 

achieved in FORTH. 

Another feature of FORTH which results in short development and debugging 

times is the unusual nature of programming by extending the language. All FORTH 

operations (which may be likened to the 'reserved' words of BASIC - 'LET', 

'PRINT', '+', '-' etc.), are contained in a dictionary. Programming proceeds by 

defining new words using the existing set and adding these new words to the 

dictionary using the special 'colon-definition' construct. These new words are in 

turn used to develop still more complex operations and in this way the FORTH 

programmer builds a special 'vocabulary', which is tailored to his problem. Each 

new operation is fully tested at the keyboard before proceeding to the next - and in 

this way bugs are caught and cured early! 
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Most complete FORTH systems will already have a number of special purpose, 
'vocabularies' built in, editor, assembler, and disk handling vocabularies are 
examples. This means that a FORTH system is normally completely self-sufficient - 
no other development software is needed whatever. Furthermore, the whole 
system is fairly compact, typically under 16k bytes. This is of particular advantage 
to the software engineer, since he can often use the target computer system as the 
development system as well. 

In case the above description has made FORTH sound like the answer to every 
programmer's dream (!), let me describe briefly some of the features which some 
programmers may find less attractive... 

The first is the use of a stack, and as a result. Reverse Polish notation. To a large 
extent these features are a part of the fundamental structure of FORTH and 
certainly contribute to the speed and compactness of FORTH. The stack also results 
in some very neat ways of passing parameters into programs. As an example, in the 
'calendar' operations outlined early in this chapter - to print out a whole year 
calendar the user simply types, say: 

1982 year 

When FORTH interprets this line of input it 'pushes' the number 1982 onto the 
stack (as it does for any numbers in an interpreted input stream). The program 
'year' then 'pops' the number off the top of the stack, and uses that as its 
parameter. 

The second, possibly controversial, feature is the use of integer arithmetic. The 
FORTH philosophy here is that integer arithmetic is much faster than floating¬ 
point, and the majority of applications only need integers anyway. For those 
applications where decimal arithmetic must be used, FORTH provides a set of 
operations with double-precision (32 bit) integers (±2,147,483,648), which may be 
used to implement fixed-point arithmetic. 

To conclude this introduction, it is worth remarking that FORTH is not an easy 
language to master. Surprisingly, FORTH is easiest for absolute beginners to 
computing! For readers like myself, who were raised on algebraic languages such as 
Pascal and BASIC - learning FORTH means learning a completely new and 
fascinating approach to programming. 

x 11 



1 

FORTH 
Fundamentals 

At its very simplest a FORTH system may be used 
like a calculator, to evaluate arithmetic expressions and directly print out the 
results. Although this seems a humble beginning, it does demonstrate the unusual 
way in which FORTH uses a 'stack', and as a direct consequence, 'Reverse Polish' 
notation. This chapter introduces and explains these two concepts, and develops a 
notation for describing the stack which will be used throughout the rest of the 
book. 

1.1 Speak FORTH 
Imagine being seated in front of a computer which speaks FORTH, and suppose, 
for example, that you would like some help in multiplying the two numbers 23 and 
34. In FORTH you would type: 

23 34 * . 

to which FORTH will agreeably respond, 

782 ok 

It is clear, therefore, that we have achieved the same result as typing PRINT 23*34 in 
BASIC. You will have noticed, however, the peculiar position of the {*> 
multiplication symbol in the FORTH version of this operation, namely, after the 
two numbers which are to be multiplied, rather than between them as is the normal 
convention. Additionally, what is the significance of the full stop {.} symbol in the 
FORTH input? 

The answer to these questions lies in the realisation that FORTH uses a 'Stack' for 
arithmetic. 

1.2 The Stack 
Let's try a simpler example than the one above, just type a single number: 

27 

FORTH will respond with the reply 'ok', on the same line: 

27 ok 

and nothing appears to have happened (except that FORTH seems to think it's 
'ok'!). But actually something rather crucial has happened, namely, the number '27' 
has been 'PUSHed' onto the stack. The symbol full stop t. >, which we encountered 
before has exactly the opposite effect - it 'POPs' the number off the top of the stack, 
and prints it out: 

and FORTH will print: 

27 ok 

I 



So, the stack had the effect of remembering a number for us as if we had jotted it 
down on a notepad. 

Let me explain the STACK, and the operations of PUSH and POP in a little more 
detail. If you are already familiar with the operation of a stack you can easily skip 
through to the next section. 

A stack is simply a special type of storage buffer for numbers, in which numbers are 
'pushed' onto the stack, for storage, and later retrieved by 'popping' back off the 
stack. The last number to be pushed onto the stack will be the very first to be 
popped back off it, and so the stack is often called a Last-in First-out or LIFO store. 

27 32 27 

27 

(a) (b) (c) (d) 

Figure 1.1 The Spring Loaded Stack 

A good way of picturing a stack is like a spring loaded plate store, of the type often 
used by cafeterias. An empty stack will look like (a) in figure 1.1. Push 27 onto the 
stack and it will appear like (b). You can see that there's plenty of room still left in 
the stack, so we could push another number onto the stack, as in (c). Pop the 
number off the stack in (c), and the number 32 is retrieved, and the stack reverts to 
(d), exactly as it was in (b). 

1.3 FORTH Arithmetic 
Let me now examine, in more detail, the multiplication example used in the 
previous section by illustrating the contents of the stack before and after each 
number and symbol in the FORTH expression: 

23 34 * . 

input: 23 34 * 

stack: empty 23 34 782 empty 

23 

Figure 1.2 

Reading figure 1.2 from left to right, we can see that FORTH simply pushes 
numbers onto the stack whenever they occur in the input. Thus, by the time we 
reach the symbol {*>, the stack already has the two numbers 23 and 34 on it. 
FORTH responds to {*> by popping the top two numbers off the stack, multiplying 
them, and then pushing the result back onto the stack. The stack after the {*> just 
has the result 782 on it. The final symbol {. >, as explained already, simply pops the 
result off the stack and prints it. 

So, we are now in a position to write down the first rule of programming in 
FORTH; it is: 

2 



All FORTH arithmetic is executed on a stack. 

Let me go a stage further, and say that all arithmetic operations work on the 
numbers on the stack, and place their results back onto the stack. This now explains 
the peculiar order of: 

23 34 * . 

instead of the usual print 23*34. 

1.4 Further FORTH Arithmetic 
A question you may well be asking yourself, at this stage, is "Doesn't this mean 
that if I want to do complicated arithmetic in FORTH, I will have to change around 
the expression first in order to make it work on the stack?". The simple answer to 
this question is "yes", you do have to alter the expression before entering it into 
FORTH, but that process is very easily learned. Let's take as a simple example, the 
expression: 

(1 * 2) + (3 * 4) 

and consider how to evaluate this expression mentally. We say "Oh, that's simple, 
it's the sum of 1 multiplied by 2 (=2) and 3 multiplied by 4 (=12). So the answer is 2 
+ 12 which equals 14". 

What we really did then was calculate 1*2, and save the result for later, then 
calculate 3*4, and finally add the two results together. Let's write that down, in 
FORTH: 

1 2 * 3 4 * + 

Figure 1.3 shows exactly how FORTH executes this, to produce the correct result of 
14. 

input: 1 2 * 3 4 * + 

stack: empty 1 2 2 3 4 12 14 

1 ~1 3 2 

2 

Figure 1.3 

Notice the clever way in which FORTH saves the result of the first multiplication, 
on the bottom of the stack, until the second multiplication is complete and the 
addition can take place. 

Ordinary arithmetic notation is often called 'infix' because the operators (+,-,*,/ 
etc.) are fixed in-between the numbers. FORTH arithmetic is called 'postfix', or, 
more commonly, 'Reverse Polish', after the Polish logician who invented the 
notation. In reverse Polish each arithmetic operator comes after the numbers upon 
which it operates (termed 'operands'). Converting from ordinary arithmetic 
notation to reverse Polish is simply a matter of looking at the expression and 
deciding how you would evaluate it on paper. Once you've decided the order in 
which to evaluate the individual operations, it is highly likely that FORTH will also 
best evaluate them in the same order. Notice that the operands in a reverse Polish 
expression remain in the same order in which they occur in the equivalent 'infix' 
expression; only the operators change position. Finally, you should try the 
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expression with a picture of the stack, to make sure that FORTH will really get it 
right. 

All of this talk of infix, and Reverse Polish may, by now, have you wondering 
"Why have I bothered with FORTH at all, since most other computer languages like 
BASIC and Pascal understand ordinary arithmetic anyway". This is certainly a fair 
criticism and is best answered by considering that reverse Polish arithmetic is very 
easy to execute and FORTH arithmetic is, as a result, very fast, certainly much 
faster than BASIC arithmetic. The stack in FORTH is, however, used for far more 
than just the execution of arithmetic. In fact, almost all FORTH operations use the 
stack to 'pass parameters' (that is, get input values, and deposit output results). 
The use of Reverse Polish in arithmetic follows naturally from the fact that FORTH 
is a stack-orientated language. 

1.5 About the Numbers 
In all of the examples so far the numbers have been whole numbers or, to use the 
correct term, integers. The reason for this is that FORTH arithmetic works on 
integers only. In FORTH we cannot have numbers like 3.14 E -2 (which is the same 
as 0.0314), properly termed 'floating-point' numbers. 

This is not such a dreadful limitation as it might at first appear, because FORTH will 
allow us to handle 'fixed-point' decimal numbers - like 100.23 or 1.234 - using a set 
of double-precision arithmetic operations which will be explained in detail in 
chapter 8. 

But for the moment let us confine ourselves to integers. FORTH will handle 
negative, as well as positive, integers in the range: 

-32,768 to +32,767 

so that -9999, -1, 0, or 10000 are all examples of valid FORTH numbers. In FORTH 
terminology, values in this range are 'signed single precision numbers', and are 
represented on the stack as 16 bit binary (beginners should look up the entry on 
two's complement arithmetic in the glossary of FORTH terminology for a more 
detailed description). 

Alternatively, FORTH will allow us to enter 'unsigned single precision numbers' in 
the range: 

0 to 65,535 

This is useful if we should require an extended positive range, but do not require a 
negative range. Notice that {.> will not print the correct value for unsigned 
numbers greater than 32767: 

50000 . —15536 ok ( wrong !! ) 

Instead we must use the 'unsigned' number print operation {U.}: 

50000 U. 50000 ok 

Most FORTH arithmetic operations will work for unsigned numbers providing that 
the result of the operation is within the unsigned number range, for example: 

50000 67 + U. 50067 ok ( 50000 + 67 ) 

40000 1 - U. 39999 ok ( 40000 - 1 ) 

20001 3 * U. 60003 ok ( 20001 * 3 ) 

4 



But care should be exercised here! 

Throughout this book we shall employ the FORTH convention that the term 
'number' implies 'signed single precision number'. Whenever we are referring to 
unsigned numbers this will be explicitly stated. 

The use of integers means that division in FORTH will sometimes give an answer 
which is not quite correct. For example, dividing 11 by 3: 

11 3 / . 3 ok 

gives the answer 3, whereas the true answer is 3 with a remainder of 2. To get 
round this there is a FORTH operation {/mod}; a special form of division which 
leaves the remainder on the stack as well as the actual result (quotient). So if we 
POP and print both of the results from the stack after a {/MOD}, as in: 

11 3 /MOD . . 3 2 ok 

then we get the complete answer e.g. 3 remainder 2. Figure 1.4 shows the stack as 
this example is executed. 

i nput: 

stack: 

11 3 /MOD 

3 (quotient) 

2 (remainder) 

Figure 1.4 The {/mod} operation 

If we require only the remainder from a division, the FORTH operation {MOD} 

should be used: 

11 3 MOD . 2 ok ( calculate remainder only ) 

Two more unusual arithmetic operations are {MAX} and {MiN}. Both need two values 
on the stack, and leave a single value; {MAX} leaves the largest of the two values, 
and {MIN} the smallest. For example: 

10 20 MAX . 20 ok 

-5 5 MIN . -5 ok 

{MAX} and {MIN} both take note of the 'sign' of the two values, using the normal 
convention that negative numbers are 'less than' positive numbers. 

Finally, FORTH has two 'sign' changing operations, {ABS} and {NEGATE}. {ABS} has 
the effect of making the number on top of the stack positive whatever its sign, for 

example: 

100 ABS . 100 ok 

-2 ABS . 2 ok 

Numbers that are already positive are not affected by {ABS}. {negate} has the effect 
of always reversing the sign: 

100 NEGATE . -100 ok 

-2 NEGATE . 2 ok 
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1.6 Some Duplication 

Suppose that we wish to add up a set of 4 numbers, but instead of producing a 
single result, print out a cumulative result at each stage in the calculation. So that 
for example, adding 1 plus 2 plus 3 plus 4 will print out: 

3 

6 
10 

where 3 is the result of 1+2, 6 is the result of 1+2+3, and 10 is the result of 
1+2+3+4. 

The FORTH version of the calculation could be as in figure 1.5. 

i nput: 1 2 + 3 + 4 + 

nHHFHRHFll 
Figure 1.5 

If we try typing the input in figure 1.5 it will indeed produce the final result of 10, 
but will not print out any of the required intermediate results. Looking at the 
picture of the stack contents in figure 1.5, we see that the intermediate results do, in 
fact, appear on the stack during the calculation, at the positions indicated by +. 
What we require is a method of printing out these intermediate values without 
actually removing them from the stack, and the FORTH word {dup> will help. 

{DUPJ is not an arithmetic operation, it is one of a special set of FORTH operations 
called 'Stack Manipulations'. fDUPJ has the effect, when executed, of Duplicating 
the number on the top of the stack, so that, for example: 

5 OUP 

will result in the number 5 as the first and second items on the stack as in figure 1.6. 

input: 5 DUP 

1 - IU- 5 

1 ll 5 

Figure 1.6 

Let me, at this stage, introduce a new shorthand notation for picturing the stack 
before and after the execution of a FORTH operation: 

input: DUP 

stack action: (n -* n n) 

The 'stack action' is in the format: 

(stack before -> stack after) 

Either side of the arrow (—>) is a list of the stack contents, the rightmost element in 
the 'stack before' list is the item on top of the stack before the operation is executed, 
and the rightmost element in the 'stack after' list is the item on top of the stack after 
the operation. If this does not seem too clear, it will after a few more examples! 

However, to get back to our problem, it should now be evident that to print the 
number on top of the stack without actually losing it we use the FORTH: 
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DUP . 

If there is only one number on the stack, then in our new stack notation C. > can be 

pictured as: 

( n —* ) and print n 

If there happen to be two numbers on the stack, {. > will print the top number and 
leave the second number on top of the stack: 

( n2 nl —» n2 ) and print nl 

The combined effect of {dup> and {.} is, therefore, to leave the stack unchanged, 
however many numbers it contains, but also print a duplicate of the number on top 
of the stack. 

DUP 

( n -* n n -» n ) and print n 

We can now rewrite the solution to our cumulative sum as: 

1 2 + DUP . CR 3 + DUP . CR A + . 

And this will print exactly the result required - 

3 

6 
10 ok 

Notice that I've also included the FORTH operation TCR> which prints a 
carriage-return line-feed on the terminal and therefore puts each result on a 
separate line. CCR} does not affect the stack at all: 

CR 

( -> ) 

1.7 More Stack Manipulation 
Most of the stack manipulation operations are designed to overcome one of the 
main limitations of a stack, which is that the order of the numbers on a stack is 
always the reverse order in which the numbers were pushed onto the stack. 
Normally this means that we can only ever pop numbers in a last-in first-out 
fashion, for example: 

100 200 300 ok 

... 300 200 100 ok 

prints the numbers in reverse order. The FORTH stack manipulation operations 
overcome this limitation. For example, the duplication words {dup>, COVER} and 
{PICK} allow us to pick out any number from within the stack and push a new copy 
of it onto the top of the stack. So in: 

100 200 300 ok 

3 PICK . 100 ok 

the operations C3 pick .} have picked out and printed the third item on the stack, 
without changing the stack in any way. Figure 1.7 shows the effect of C3 pick} on 
the stack, cover} picks out the second item on the stack, and pushes a duplicate of it 
onto the stack, cover} is therefore the same as C2 pick}. 
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input: 3 PICK 

stack: 300 > 100 

200 300 

100 200 

100 

Figure 1.7 The operation {pick} 

The stack re-ordering words {swap}, {rot} and {roll} allow us to change around 
the order of the numbers on the stack. For example in: 

100 200 300 ok 

SWAP ROT ok 

... 100 200 300 ok 

the operations {SWAP ROT} have completely reversed the order of the three numbers 
on the stack. Figure 1.8 shows the stack during the phrase {swap rot}. 

input: SWAP ROT 

stack: 300 

200 
100 

Figure 1.8 {swap rot} 

{ROLL} is the more general form of stack re-ordering operation, {n roll} will have 
the effect of rotating the nth item on the stack up to the top of the stack. {2 roll} is 
thus the same as {swap}, and {3 roll} the same as {rot}. 

Finally, the operation {DROP} is worth mentioning. {DROP} has the effect of simply 
losing the number off the top of the stack - like {.} but without actually printing it. 

1.8 Summary and Exercises 

Here is a summary of the FORTH operations covered in this chapter, followed by a 
set of practice problems in the use of these operations. Suggested solutions are 
given at the end of the book. 

In the stack descriptions of the following operations 'n' indicates a single precision 
number, and 'un' an unsigned single precision number. Also note that nl, n2 etc. 
does not indicate the order of numbers on the stack. Top of stack is always on the 
right of each of the stack-before and stack-after lists. 

The recommended pronunciation is given, on the right hand side of the page, in 
"quotes", for those words whose pronunciation may not be obvious. For example 
{dup} is pronounced "dupe". 

Stack Manipulation: 

DUP (n -» n n) "dupe" 

Duplicate the number on top of the stack. 

DROP (n -> ) 

Discard the top number from the stack. 
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SWAP C n 1 n2 n2 n 1 ) 

Exchange the top two stack numbers. 

OVER (n1 n2 —* nl n2 nl) 

Duplicate the second number on the stack. 

ROT (nl n2 n3 -» n2 n3 nl) "rote" 

Rotate the top three numbers bringing the third to the top. 

PICK (nl -> n2) 

Duplicate the nl'th number down on the stack, nl must be greater than zero. 

ROLL ' (n -» ) 

Rotate the n'th item (not counting n itself) up to the top of the stack, n must 
be greater than 1. 

Arithmetic: 

+ (nl n2 -> sum) "plus" 

Add nl and n2 leaving the sum. 

- (nl n2 -» di f f ) "mi nus" 

Subtract n2 from nl leaving the difference. 

* (nl n2 prod) "times" 

Multiply nl and n2 leaving the product. 

/ (nl n2 -> quot) "divide" 

Divide nl by n2 leaving the quotient which is rounded toward zero. 

MOO (nl n2 -> rein) "mod" 

Divide nl by n2 leaving the remainder with the same sign as nl. 

/MOD (nl n2 rem quot) "divide-mod" 

Divide nl by n2 and leave the remainder and quotient. The remainder has the 
same sign as nl. 

MAX (nl n2 -> max) "max" 

Leave the greater of the two numbers nl and n2. 

MIN (n1 n2 —> min) "min" 

Leave the lesser of the two numbers nl and n2. 

ABS (n -> |n|) "abs" 

Leave the absolute value of n (reverse the sign of n if it is negative, otherwise 
leave it unaltered). 

NEGATE (n -n) 

Reverse the sign of n. (Two's complement.) 

9 



Output printing: 

(n -> ) "dot" 

Print n (in current base - see chapter 7.4) as a signed single precision number 
with one trailing space. 

U. (un -» ) "u-dot" 

Print n (in current base) as an unsigned single precision number with one 
trailing space. 

CR ( -» ) "c-r" 

Print a carriage-return and line-feed. 

Exercises 

1) Write the following arithmetic expressions in FORTH: 

(1 + 2) * (3 - 4) / % + t C —' 

10 + 100/9 + 5 

2 * (3 * (4 * (5 + 6))) 

2) Convert the following FORTH expressions back into 'infix': 

20 10 + 20 10 - / 

1 2 3 4 + + + 

20 1 2 * - 

3) Show how the stack will be affected by the following operations, assuming in 
each case that the stack is initially empty: 

100 -200 ABS MAX 

-10000 0 MIN NEGATE 

1 2 SWAP OVER 

10 0UP DUP * * 

10 20 30 40 3 PICK + 

4) How would you calculate the sum, difference, product and quotient of two 
numbers, without having to re-enter the two numbers for each separate 
calculation? (Hint - you must use the stack duplication words). 
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2 

The FORTH WORD 

It may seem unusual to ask the question "What does 
FORTH actually do when it executes a line of input?" so early in this book, but 
FORTH is an unusual language and the answer to this question is not complex, but 
it will increase our understanding considerably and make programming in FORTH 
that much easier. This chapter describes a simple model of a FORTH system as it 
executes a line of input. At the same time, some useful terminology is introduced; 
terminology that will be used often throughout the rest of the book. Knowing how 
FORTH works enables us to predict some of the things that can go wrong and so 
the chapter continues by introducing FORTH error handling. Finally, we extend 
our vocabulary to include variables, constants and arrays and thereby introduce the 
important concept of the 'defining word'. 

2.1 FORTH in Action 
All of the FORTH operations which we have discovered so far (the ones I've 
enclosed in {cur ly brackets}) are called, in FORTH terminology, WORDs. Even the 
single character symbols like {*} or {.} are FORTH words. Each word is contained 
in the FORTH dictionary so that when FORTH interprets a line of input each 
word in the input stream is looked-up in the dictionary. Figure 2.1 describes two of 
the entries in the dictionary, {*> and {.}. 

Word Definition.. 

* (n 1 n2 -> prod) Multiply nl by n2 

. (n —» ) Print n 

Figure 2.1 Two DICTIONARY entries 

Just like an ordinary dictionary, the FORTH dictionary contains words, and for 
each word a definition. The definition specifies the ACTION of the word when 
executed. Figure 2.1 shows the definition both as a verbal description, and more 
precisely using the (stack before —» stack after) notation proposed in chapter 1.6. 
The FORTH Handy Reference (at the end of the book) shows the FORTH-79 
standard dictionary, which contains about 130 words, in the same format. 

Let us imagine that the dictionary contained only the two words {*} and {.}, and 
examine in more detail how FORTH interprets our simple multiplication example: 

23 34 * . 782 ok 

FORTH will go through (very quickly) the following steps after we press return: 

i) FORTH finds the first word in the input stream, which is {23J, and searches 
the dictionary for a match. {23} is not in the dictionary so FORTH assumes 
instead that it is a number. Indeed {23} is a valid decimal number, so it is 
converted into binary and pushed onto the stack. 

ii) Likewise, the second word in the input stream, {34} is not found in the 
dictionary, so again it is assumed to be a number and pushed onto the stack. 
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iii) The third word in the input stream {*} is found in the dictionary so the word 
is executed causing the two numbers on top of the stack to be multiplied, and 
the result pushed back onto the stack, as defined by the dictionary definition 
of {*}. 

iv) The fourth word is {.}, again this word is successfully found in the dictionary 
and executed, causing the number on top of the stack to be printed. 

v) There is no more input left, so FORTH prints the message 'ok' and waits for 
another line of input. 

We can now write the second rule of programming in FORTH: 

All input to FORTH consists of a sequence of words. Each word must be 
either in the dictionary, in which case it is executed, or a valid number, in 
which case it is pushed onto the stack. 

2.2 The FORTH Error 
The above description of FORTH in action begs the question - "What happens if 
you type a word which is not in the dictionary, and not a number either?". Well, if 
we type something like: 

PQRXYZ PQRXYZ ? 

FORTH simply replies with the message 'PQRXYZ ?' which means, predictably, 
that {PQRXYZ} is not in the dictionary, and it's not a number either! The FORTH 
error message'?' is similar to the BASIC 'Syntax error' message, except that FORTH 
helpfully prints out the word in the input which it doesn't understand. This is 
useful if you have a long input line with an error in the middle, for example: 

1 !2 * 3 4 * + !2 ? 

An additional rule of FORTH is that each word in the input must be separated by at 
least one space. It is doubly important that this is observed, since confusing errors 
can occur if it is not; for example, missing the space between a number and a valid 
FORTH word, or between two FORTH words: 

23 34* . 34* ? 

FORTH treats {34*} as one word, and cannot find it in the dictionary or interpret it 
as a number, so we get the syntax error message '?'. 

Missing the space between two numbers is even worse: 

2334 * . 0 STACK EMPTY 

FORTH reads the first word as {2334}, and pushes the number two thousand three 
hundred and thirty four onto the stack. But when FORTH comes to execute the 
multiplication {*}, which needs two numbers on the stack, there is only one and so 
FORTH prints the error message 'STACK EMPTY'. Of course, if the stack had any 
numbers left over from previous operations still on it, then {*} would probably use 
one of these for the missing operand and produce a confusing result. For this 
reason it is a good idea to clear the stack down from time to time by simply typing 
{.} a few times until you get the message STACK EMPTY. 

Notice also from the above example that a spurious zero has been printed before 
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the error message. This is because {.} has actually printed a number from off the 

end of the stack, which is usually a zero. 

The error condition STACK EMPTY is one of the most common error conditions in 
FORTH, and because it is peculiar to the use of the stack, there is no equivalent to 
STACK EMPTY in BASIC. STACK EMPTY occurs whenever there are less numbers 
on the stack than a FORTH operation needs in order to execute correctly. Almost all 
operations need input arguments or parameters and could potentially cause the 
error condition STACK EMPTY. The stack notation (stack before * stack after), 
defined in chapter 1.6, tells us exactly how many arguments an operation needs. 

For example: 

{.1 (n -» ) 

needs one argument, 

{*> (nl n2 -> prod) 

needs two arguments, and 

{ROT} (nl n2 n3 —» n2 n3 nl) 

needs three arguments. Later in the book 1 will describe a technique for keeping a 
note of the contents of the stack whilst writing a FORTH program - and thereby 
minimising the likelihood of STACK EMPTY. 

2.3 The FORTH Variable 
Chapter 1 introduced the stack, and described how all FORTH arithmetic is 
performed on the stack. In addition, we saw how temporary results may be saved 
on the stack for later use, or how, using the stack manipulation words, a result may 
be used by more than one FORTH operation. The stack may be thought of as a 
useful short-term memory, or as a scratchpad for doing rough work in, but is 
clearly not suitable for long-term storage of numbers. Instead we must use the 

variable. 

The BASIC programmer is familiar with the use of variables, since in BASIC almost 
all arithmetic is performed between variables. The BASIC statement: 

LET A1 = 100 

simply sets the variable 'AY to the value 100. The equivalent FORTH statement is: 

100 A1 ! 

but if you were to type this, FORTH would reply with the error message 'A1 ?', the 
reason being that in FORTH we must define the variable first, using the word 

{VARIABLE}: 

VARIABLE A1 ok 

This has the special effect of reserving a memory location labelled ‘AY. BASIC has 
no equivalent to this since, in BASIC, variables are implicitly pre-defined. In 
FORTH this is not so and a variable must be declared, or 'defined', before it may be 
used. In case this is not too clear, imagine that you are writing a BASIC program 
and need a new variable which you decide to call T. You would simply write 'LET 
1= ...'. In FORTH you must define the variable before you can assign a value to it or 
use it in further operations, by typing: 
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VARIABLE <name> 

to create a variable named <name>.1It is worth noting that there are no restrictions on 
the number of characters in <name>, or the characters themselves. Some FORTH 

systems place the whole variable name into the new dictionary entry, but others 
save only the first three or four characters, in which case you must ensure that 
these are unique (the documentation for your particular system will tell you more 
about this). Either way we can use meaningful variable names like: 

VARIABLE Year ok 

The FORTH input: 

1982 Year ! ok 

sets 'Year' to the value '1982'. Here {1982} is pushed onto the stack, {Year} gives the 
name of the variable, and {!} stores the number on top of the stack into the 
variable. 

In the FORTH input: 

Year a . 1982 ok 

the word {a} has the converse effect of fetching the value of the variable {Year}, and 
pushing it onto the stack. {.} then prints it out, so we have the FORTH equivalent 
of the BASIC 'PRINT Year' (which some BASIC's would not allow!). The phrase {a 
.} is used so often that FORTH has a special operation {?} with exactly the same 
effect, so that we could simply type: 

Year ? 1982 ok 

to print the value of the variable. 

The words {!} and {a} are called "store" and "fetch" respectively, and may be used 
together to perform arithmetic on variables, for example: 

A1 a 1 + A1 ! ok 

is directly equivalent to the BASIC, 'LET A1=A1 + 1'. This FORTH example does 
not seem quite so peculiar if you consider that the two words {A 1 a} fetch the value 
of A1 onto the stack, and the two words {A 1 !} store the value on top of the stack in 
Al. The whole line simply breaks down into the three operations: 

i) Fetch the value of Al onto the stack. 

ii) Add one, using FORTH stack arithmetic. 

iii) Store the value on the stack, back into Al. 

We may write any calculation involving variables in FORTH. Figure 2.2 illustrates 
how the BASIC 'LET A=2*X + Y' would be written, in FORTH, assuming that A,X 
and Y have been pre-defined. 

'Some FORTH systems require an initial value to be supplied when the variable 
is defined, so that: 

n VARIABLE <name> 

defines a variable named <na»e> with initial value n. 
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BASIC: LET A = 2 * X + Y 

FORTH: 2XB*Ya + A! 

Figure 2.2 FORTH Variable Arithmetic 

It is certainly fair comment to say that FORTH variable arithmetic is somewhat 
peculiar, but it is also true that variables are used far less often in FORTH than in 
other languages. The reason for this will become clear later. 

Now, however, a few more words about {variable}. 

2.4 A Closer look at {variable} 
The reason that I have spent some time looking at variables in a chapter which 
started by talking about the FORTH dictionary is that {variable} is one of a special 
set of words called defining words. 

The FORTH dictionary is rather like a dictionary in which some pages have been 
deliberately left blank. New words, together with their definitions, may be written 
in the blank pages, so that when subsequently a word is looked up in the dictionary 
the newly added words will be searched along with the rest. The defining words 
are a special class of FORTH operations which have the effect of writing new words 
into the 'blank pages' of the dictionary. 

So the actual effect of typing: 

VARIABLE Year ok 

is to add a new word to the dictionary; {Year}. But back in section 2.1 we saw that 
all of the words in the FORTH dictionary have an action which takes place when the 
word is typed in - and so it is with new words defined by {variable}. Their action is 
to push the address of the variable onto the stack. Typing, for example: 

Year . 23967 ok 

will cause FORTH to print out a very peculiar number - which you've certainly 
never seen before! (It's unlikely to be '23967' either!). This is the actual address of 
the memory location which FORTH has reserved for the variable {Year}. 

Figure 2.3 takes a look inside the dictionary to show a simplified view of the new 
dictionary entry for Year. 

Year 

'action' 

1982 address 23967 

Figure 2.3 The Dictionary entry for {Year} 

The dictionary entry has three distinct parts. The first is a 'name' part which 
contains the word "Year". The second specifies the 'action' of the variable, which is 
to push onto the stack the address of the third part of the dictionary entry 
containing its actual value.2 
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If we now look at the store {! } and fetch {3} operations in more detail, we see that 

they are equivalent to the BASIC operations POKE and PEEK. FORTH defines {! > 
and {3> as follows: 

! ( n addr -> ) Store n at addr 

3 ( addr -> n ) Fetch contents of addr 

These are, like the majority of FORTH operations, 16 bit number operations. 

FORTH does have 8 bit store and fetch operations which are useful for single 

character manipulation, and are called « ! > and {C3> respectively, more of these in 
chapter 7. 

The FORTH input: 

1 Year +! ok 

actually causes the following sequence of events: 

i) The first word {1} is not in the dictionary, and is taken to be a number, which 
is pushed onto the stack. 

ii) The second word {Year} is looked up in the dictionary. If it is found (and it 

will only be found if it has been pre-defined using {variable}), then the 
address of Year will be pushed onto the stack. 

iii) The third word {+!} has the special effect of adding the second number on 

the stack into the contents of the address on top of the stack. So year becomes 
equal to 1982+1 = 1983. 

Of course, it is not necessary to remember this sequence of events every time you 

use FORTH variables. Like any self-respecting high-level language, FORTH will let 

you use variables without ever knowing where, in memory, the variables are 
stored. 

2.5 The FORTH {CONSTANT} 

Constants are simply convenient ways of representing often-used numbers by a 

meaningful name, rather than having to quote the number each time it is needed. 

In FORTH, constants must be defined before they can be used, just as variables 
must be defined. For example: 

1234 CONSTANT Phonenumber ok 

defines a constant called 'Phonenumber', with the value '1234'. Typing: 

Phonenumber . 7234 ok 

will cause the number 1234 to be pushed onto the stack, as if it had been explicitly 

typed (this is the actual value of the constant, not its address), and then printed. 

The operation {CONSTANT} is, in fact, another example of a 'defining word'. In the 

example above, the constant {Phonenumber} becomes a new word in the dictionary, 

which returns its value when executed. The value is, however, fixed at the value 

supplied when the constant was defined, and may not be changed in the same way 

2The 'action' part contains the address of a program which lias the action 
specified. 
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that a variable may be altered. This is not strictly true; after all, if your phone 

number should change, you could simply type: 

5678 CONSTANT Phonenumber ok 

which defines a new constant 'Phonenumber', with the new value, even though we 

already have a constant called 'Phonenumber'.3 

In fact this example illustrates another important feature of the FORTH dictionary: 

When a word is looked up in the dictionary, the dictionary is searched in the 

reverse order to the order in which new words were added. 

Thus, after redefining 'Phonenumber', we actually have two definitions of 

'Phonenumber' in the dictionary - but the most recently defined version will 

always be used. 

If we should need to revert back to the old definition of Phonenumber, then we 

may simply 'forget' the new one, using the word (forget}: 

FORGET phonenumber ok 

Phonenumber . 1234 ok 

{FORGET} is a useful 'housekeeping' operation; we can use it to clear out the 

dictionary from time to time. But use it with care since {forget <name>> will forget 

the most recently defined version of <name> and, in addition, anything defined since 

<name>. 

2.6 Summary and Exercises 
Here is a summary of the FORTH words covered in this chapter, followed by some 

practice problems on their use. 

In the stack descriptions 'byte' refers to a 16 bit value, but with only the lower 8 bits 

set or used by the operation. The upper 8 bits are usually set to zero, 'addr' refers to 

a 16 bit value which represents the address of a byte in memory. The addressed 

byte may be the first byte of a larger item (i.e. a 16 bit variable). 

<name> refers to the next word, delimited by spaces, in the input stream. <name> can 

consist of any non-space characters in the standard ASCII character set (see 

glossary for a description of ASCII), although the maximum number of characters 

and the number of characters which will be stored in the new dictionary entry are 

implementation dependent. 

Memory: 

@ (addr -> n) "fetch" 

Fetch from memory the number contained at addr. 

! (n addr ) "store" 

Store n at address. 

’Some FORTH systems print a 'warning' message whenever a word is defined 
which already occurs in the dictionary. This message should be ignored since 

re-defining existing words is a perfectly valid facility. 
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c@ (addr -» byte) "c—fetch" 

Fetch the byte contained at addr. 

C! (byte addr -> ) "c—store" 

Store byte at address. 

? (addr -> ) "question-mark" 

Display the number stored at address, using the same format as {.}. 

+! (n addr —* ) "plus—store" 

Add n to the 16 bit value stored at address, using the (+> operation. 

Defining Words: 

VARIABLE ( ) 

When used in the form: VARIABLE <name> creates a dictionary entry for 

<name> with two bytes of storage (in the parameter field - see chapter 9). 

When <name> is later executed it will place the storage address on the stack: 

<name> ( —> addr) 

CONSTANT (n -> ) 

When used in the form: n CONSTANT <name> creates a dictionary entry 

for <name> with n stored (in the parameter field). When <name> is later 

executed it will leave n on the stack: 

<name> ( -> n) 

Dictionary Management: 

FORGET ( -> ) 

When used in the form: FORGET <name> the most recently defined 

dictionary entry for <name> is deleted, together with all words defined since 

<name>. An error occurs if <name> cannot be found. 

Exercises 

1) Define the following constants: 

Name Value 

ten 10 

fred 4*ten+1 

2) Define the following variables, and set them equal to the values: 

Name Initial value 

XYZ -100 

A XYZ-f red 

3) Write a FORTFI expression equivalent to the BASIC statement: 

LET X = 1 + X + X*X 

Assume that the variable X has been pre-defined. Can your solution be 
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improved by the use of Duplication, or even {+!>? 

4) Write a FORTH expression to evaluate the quadratic equation: 

ax f 2 + bx + c 

where x has been defined as a FORTH variable and a, b and c have been 

defined as FORTH constants. 

5) Show how {CONSTANT} may be used to name any specified memory location, 

and then use it like a variable. Don't actually try this on your computer - it 

could be disastrous! 
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3 
The COLON 
Definition 

So far we have examined in detail two defining words 

{variable} and {constant}. Both of these have the effect of adding new words to 

the dictionary, new words which will have a special action when executed to make 

them into variables and constants. The FORTH word colon {:}, is also a defining 

word, but a much more general defining word. Using it we may not only add new 

words to the dictionary but actually define the action that the new words will have 

when executed. 

3.1 Colon Calculations 
Suppose that we wish to compute some percentages using FORTH. We could 

simply type, for example: 

150 12 * 100 / . 18 ok 

to calculate 12% of 150. But with more than just one or two percentages to compute 

we could really use a special 'percentage' operator, rather like the percent key on a 

calculator. With a simple colon definition we can easily define such an operator, as 

follows: 

: X * 100 / ; ok 

and we may now type {%} instead of the sequence {* 100 /}, for example: 

150 12 % . 18 ok 

This is clearly much neater! It is less typing (and therefore less prone to error), and 

more readable as well. 

The definition of m is an example of a 'colon definition', which has added a new 

word to the dictionary that will have the same effect, when executed, as if the 

sequence {* 100 /} had been explicitly typed. Figure 3.1 shows how this colon 

definition is structured. 

: X * 100 / ; 
)   - \ 

start name body end 

Figure 3.1 The Colon Definition of {X} 

The colon {:} and the semi-colon {;} start and end the definition respectively. A 

colon definition always starts with a colon and is always terminated by a 

corresponding semi-colon. The <name> part of the definition is the first word 

following the colon and is the name given to the new dictionary entry. Just like any 

other FORTH input, the colon and the name must be separated by at least one 

space. Likewise, the name and the first word in the 'body' must also have at least 

one space separating them. The body of the definition may be any valid sequence of 

FORTH words (including numbers), and is compiled into the new dictionary entry. 

It is the body of the colon definition that defines the action of the new word when it 

is later executed. 
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Like the name of variables or constants, the <name> part of a colon definition can 

be any length and consist of any characters, but in many FORTH systems the first 
three or four characters must be unique. 

In the m example, the action consists simply of multiplying the two numbers on 

top of the stack and dividing the result by 100. We may thus describe the new word 

I7.y just like any other FORTH arithmetic operator by using the conventional (stack 
before —> stack after) notation, as follows: 

'/• Cn 1 n2 -> percent) Take n2 percent of nl, 

percent=n1*n2/100. 

Indeed, it is a good idea to document all new words in this manner, so that at any 

time you will know exactly what your extended FORTH dictionary contains, and 

how to use it. This is particularly useful if you go on to use your newly defined 

word in further colon definitions. 

3.2 More Percentages 
Once «} has been defined, it is treated just like all other FORTH operations, so that 
it may be included in complex expressions, like: 

500 15 % 2 % . 1 ok 

(which computes 2% of 15% of 500), or CU may be included in the body of another 
colon definition, for example: 

VARIABLE account ok 

: invest 

account 3 ( get account ) 

12 % ( compute interest ) 

account +! ( add into account ) 

; ok 

If we then place £200 in our account by typing: 

200 account ! ok 

We can discover how much the account will contain after 3 years of accumulating 

compound interest at 12%, by typing: 

invest invest invest ok 

account 3 . 280 ok 

Apart from illustrating the effect of a healthy rate of interest, this example 

demonstrates a number of new facilities: 

i) A colon definition may occupy more than one line of input and, even though 

we type a 'return' at the end of each line, FORTH does not complete the 

definition and print 'ok' until after the terminating semi-colon. The additional 

spaces are ignored and are included merely to improve readability. 

ii) Comments may be included by enclosing explanatory, text in (round 

brackets). Remember that open-bracket -CO is a FORTH word and, like any 

other, must have at least one space on either side. The close-bracket is not a 

word, but simply a 'delimiter'’ to indicate the end of the comment. 

iii) Newly defined variables (and constants) may also be included in the body of 

a colon definition. They are, after all, just words in the dictionary. 
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If we examine the definition of {invest) in a little more detail, we see that {invest) 

is not a new arithmetic operator, like {%). It is, in effect, a complete, albeit very 
simple, program. The program may be run by typing: 

invest ok 

{invest) uses the stack during execution, but has no overall stack effect. 
Nevertheless, we may still document {invest) (and {account}) in the recommended 
manner: 

account ( -> addr) User variable for invest 

invest ( -> ) Add interest at 12% into account 

Notice that I have documented these new words in the order in which they were 
defined. 

3.3 Colon Definition or Program? 
Figure 3.2 shows a very simple BASIC program with an equivalent FORTH colon 
definition. 

BASIC FORTH . 

: Squared 

10 INPUT X 

20 PRINT "Squared = ";X*X 

; ok 

RUN 

?4 

Squared = 16 4 Squared = 

Figure 3.2 BASIC in FORTH 

Line 10 of the BASIC program asks the user to type a number, which is placed in 
the variable 'X'. Line 20 then prints the message "Squared = ", and finally the result 
of X*X. 

The FORTH equivalent is simpler, because rather than asking the user for the 
number which is to be squared, the FORTH program takes the number off the top 
of the stack and uses that instead. The colon definition has been deliberately given 
the name {Squared) so that to run the program we simply type a number, followed 
by 'Squared', and hit 'return'. The action of {Squared) is to first print " = " then 
multiply the number on top of the stack by itself {dup *} and finally print the result. 
This gives us a surprisingly neat and readable way of running a program, for 
example: 

4 Squared = 16 ok 

5 Squared = 25 ok 

6 Squared = 36 ok 

Notice that if you should forget to type the preceding number, FORTH will respond 
with the error message STACK EMPTY: 

Squared = 0 STACK EMPTY 

This is because {Squared) needs one argument, as we see from its stack description: 

Squared (n -* ) Print n squared. 
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Two additional features of {Squared} are worth discussing, 

i) {Squared} does not need to use a variable, as opposed to its BASIC 

counterpart which does. It is a characteristic of FORTH programs that 

variables are not often used, the stack being preferred for holding temporary 

values, as in {Squared}. 

Experienced programmers may be sceptical of this use of the stack, and ask 

the question "Does FORTH have an equivalent operation to the INPUT 

statement of BASIC?". The answer is that it is possible to request input from 

the user, in FORTH (as I will show in chapter 7), but for most applications the 

use of the stack to pass input values to a program is preferred. It is certainly 

easier and, after all, what could be neater than typing '4 Squared'? 

ii) The use of dot-quote {."}. This is the FORTH equivalent of PRINT " ... "in 

BASIC, and will print all of the text following {."} until the next occurrence of 

the double-quote character ("). Most FORTHs will allow dot-quote to be used 

outside a colon definition, for example: 

Hi there " Hi there ok 

When used inside a colon definition the enclosed message is compiled, and 

then printed out when the word is executed: 

: GREET Hi there 11 ; ok 

GREET Hi there ok 

Again, note that dot-quote must have at least one space on either side. The 

terminating quote (") is simply a 'delimiter' to mark the end of the text to be 

printed and need not be preceded by a space. If it is, then the space will form 

part of the printed text. 

We can now answer the question posed by the title of this section "Colon Definition 

or Program?", by observing that programming in FORTH is achieved by writing 

one, or more, colon definitions - in other words, a colon definition is a program. 

The comparison between a BASIC program and a FORTH colon definition serves to 

illustrate this principle but the analogy must not be taken too far; the BASIC 

programmer develops, extends and edits one program to achieve his goal, whereas 

the FORTH programmer achieves the same goal by writing a series of colon 

definitions, each of which is compiled and added to the dictionary, and tested 

separately. Furthermore to run a number of different BASIC programs requires that 

each one is separately loaded and RUN, but compiled FORTH is so compact that 

many different programs may coexist together in the dictionary and any one of 

them may be run just by typing its name. 

3.4 Interpret.. Compile? 
Since I have used both 'interpret' and 'compile' to describe FORTH on different 

occasions in this book so far, now is perhaps the time to clarify these terms. Let us 

consider the simple subtraction: 

200 50 - . 150 ok 

as soon as we finish typing the line of input and hit the 'return' key (after the {.} 

symbol), FORTH interprets the input in the manner already described; each word is 
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in turn looked up in the dictionary. If it is found, it is executed, otherwise it is 

treated as a number and pushed onto the stack. 

Any FORTH which may be typed in and executed in this way may also be included 

in a colon definition, by simply preceding the input by C: name) and terminating it 

by {;>. The initial colon has the effect of switching FORTH from 'interpret' mode 

into 'compile' mode and the terminating semi-colon has the opposite effect. 

Treating our simple subtraction example in this manner gives us the following 

colon definition: 

: example 200 50 - . ; ok 

The initial colon generates a new dictionary entry with the name 'example', and 

switches FORTH into 'compile' mode so that the following program, up to the 

semi-colon, is compiled into a compact set of instructions which are placed into the 

new dictionary entry. Figure 3.3 illustrates this example: 

Figure 3.3 A New Dictionary Entry 

The new dictionary entry starts with the name of our new word, in this case 

'example' and contains four instructions, each one corresponding to a word in the 

body of the colon definition - the first is 'push 200 onto the stack' - the second is 
'push 50 onto the stack' - and so on. 

To execute these instructions we type: 

example 150 ok 

to produce exactly the same result as the original interpreted input. 

In reality, the actual compiled instructions in the dictionary are not as long winded 

as they might appear from figure 3.3. Each consists simply of the 'address' of the 

corresponding dictionary entry (i.e. the dictionary entry for the word {-}, or {.}). 

The 'code pointer' points to a fast 'run-time' program which will execute the words 

in the definition by 'calling' each address in turn. This, and other details, are 

covered in depth in chapter 9, but for the present we shall note that: 

Ordinary FORTH is interpreted (and executed) straight away, but if the same 

input is enclosed in a colon definition, then it is compiled, and may be later 

executed by typing the name of the colon definition. 

3.5 Creating tables and arrays 
Array storage is a common requirement in many programs, and accordingly most 

languages provide facilities for setting up arrays. In BASIC arrays are 'dimen- 
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sioned' using the 'DIM' statement. 

FORTH does not have an equivalent to 'DIM' in its standard word set, but does 
provide all of the necessary operations to 'build' arrays whenever they are needed. 
(Remember that because FORTH is an extensible language it doesn't need to have 
all of the facilities you are ever likely to require pre-defined.) 

The easiest way of reserving array space in the dictionary is with the word {ALLOT}: 

ALLOT (n -> ) Allot an extra n bytes of space to the 

most recently defined dictionary entry. 

{ALLOT} may be used together with {variable}. For example: 

VARIABLE double 2 ALLOT ok 

will have the effect of defining a new variable named {double}, with space for a 
single value, but {2 ALLOT} then reserves an extra 2 bytes so that the variable 
{double} has room for 2 values altogether. (A single value takes up 2 bytes of 
memory). Figure 3.4 illustrates the whole dictionary entry for {double}. 

Figure 3.4 The Dictionary entry for {double} 

We now have, in effect, a two element 'array'. The word {double} will return the 
address of the first number in the array, add 2 and we have the address of the 
second number. For example: 

100 double ! ok 

200 double 2i ! ok 

will initialise the array to contain the values 100 and 200, 

1 double 2+ +! ok 

double 2+ ? 201 ok 

increments the second number, and prints its new value. 

An alternative and, in many ways, neater way of setting up arrays is to use the 
defining word {create}, {create} is exactly like {variable}, except that it reserves 
no space in the dictionary entry. To set up an array using {create} we must {allot} 

the whole of the space required. For example: 

CREATE array 40 ALLOT ok 

defines an array with space for 20 numbers.1 

Instead of using {allot} we could use {,} (pronounced "comma") to both reserve 
space and set each element to an initial value. {,} has the effect of popping the 
number off the top of the stack, and storing it in the next free location (2 bytes) in 
the dictionary; thus, it is particularly useful for setting up tables of constants. For 
example: 
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CREATE TABLE -10 , -5 , 0 , 5 , 10 , ok 

defines a five element array with values-10, -5, 0, 5 and 10. Again, we may pick out 

any value by adding an offset to the address returned by {TABLET, as before, but a 

special colon definition is the best way to do this. For example: 

: TABLES 1- 2 * TABLE + S ; ok 

To pick out an entry simply precede the word {tables) by the number of the 

required entry, for example: 

5 TABLES . 10 ok ( print the fifth entry ) 
1 TABLES ok ( fetch the first entry ) 
2 TABLES ok ( and the second ) 
+ . —15 ok ( and add them ) 

Notice the use of the word {1—> in the definition for {tables), and the word {2 + ) in 

the examples with {double) earlier. FORTH defines four often used additions and 

subtractions for convenience, {1 +), {1 -), {2 +) and {2-}, which are identical in 

action to their equivalent phrases {1 +), {1 —), {2+)and{2-) but are usually defined 

in machine-code for faster execution. 

3.6 The Stack Notation Extended 
In the last chapter I promised to describe a technique for illustrating the stack 

during program execution and it is just such a technique which we could use to 

clarify the operation of {tables) above. The technique is to list vertically each word 

in the body of the colon definition. Then look up each word, in turn, in the FORTH 

Handy Reference, and note down the stack effect of that word, remembering that 

the 'stack after' list becomes the 'stack before' list for the next word down. 

Figure 3.5 illustrates this notation in describing the operation of {tables): 

WORD Stack Effect Comments 

1- (n^-> n—1) subtract 1 from index. 

2 (n—1 -> T\—1 2) push 2 onto stack. 

* (n—1 2 '-> offset) multiply to give offset. 

TABLE (offset -> offset addr) fetch start address of TABLE. 

+ (offset addr -> offset+addr) add offset. 

S (offset + addr -> +n) fetch value required. 

Figure 3.5 The operation of {tables) 

One feature is worth noting in particular; 

The 'stack before' list of the first word, and the 'stack after' list of the final 

word, give the overall stack effect. These are indicated by + in figure 3.5 and 

'Important note - on some FORTH systems the word {create) cannot be used 
like this, and (variable) must be used instead, i.e.: 

VARIABLE array 38 ALLOT 

See your system documentation to find out which vou must use! 
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enable us to formally describe {tables} as follows: 
TABLES Cn 1 -> n2) Fetch the entry from TABLE indexed by 

nl. nl must be in the range 1 to 5. 

The author has found this stack notation invaluable in developing FORTH 
programs with complex stack manipulations, and far from being cumbersome the 
technique soon becomes rapid as familiarity is gained. In particular, the 
experienced FORTH programmer will not have to refer often to the Handy 
reference, and will place words in the left hand column in groups of more than one, 
where the stack effect is very clear (or none at all) so that the whole diagram is 
much simplified. 

Another useful technique for 'debugging' FORTH programs is to use the word 
{DEPTH} with {.} to print the number of values contained on the stack at certain key 
points in the definition under development. If we define: 

: .S CR DEPTH . ; ok' 

{. S} will print the number of values on the stack, without affecting the stack at all. 
Including this in a new definition: 

: TABLES 1- 2 * .S TABLE + .S 9 ; ok 

... 0 STACK EMPTY ( clear the stack first ) 

4 TABLES 

1 
1 ok 

shows us the number of stack values at the points marked by {. S} in the definition, 
and that all is well during execution! We can now FORGET {tables} and redefine it 
without {.S}. 

3.7 Summary and Exercises 
The following new words have been introduced in this chapter: 

Stack Manipulation: 

DEPTH ( -> n) 

Leave the number of values contained on the stack, not counting n. 

Arithmetic: 

1 + (n 

Increment n by 1. 

1— (n 

Decrement n by 1. 

2 + (n 

Increment n by 2. 

2- (n 

Decrement n by 2. 

n + 1) 

n—1) 

n + 2) 

n—2) 

"one—p tus" 

"one—minus" 

"two—plus" 

"t wo—minus" 
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Defining Words: 

: ( 

Used in the form: 

"colon" 

: <name> .... ; 

Creates a dictionary entry for <name>, and sets 'compile' mode so that 
subsequent words from the input stream are compiled into the new 
dictionary entry. These will be executed when <name> is later executed. 

; ( —» ) "semi—colon" 

Terminate a colon definition and stop compilation. 

CREATE ( -> ) 

Used in the form: CREATE <name> to define an empty dictionary entry for 
<name>. When <name> is later executed the address of (the parameter 
field for) <name> is left on the stack: 

<name> ( -» addr) 

Dictionary Words: 

ALLOT (n -> ) 

Reserve n bytes in (the parameter field of) the most recently defined 
dictionary entry. 

, (n —> ) "comma" 

Allot two bytes in the dictionary and store n there. 

Output: 

." ( —> ) "dot—quote" 

When used in the form: ." text" the text up to but not including the delimiter 
character " is printed. If dot-quote occurs within a colon definition, then the 
text is compiled so that it will be printed at execution time. Up to 127 
characters may be enclosed. 

Miscellaneous: 

( ( —» ) "paren" 

When used in the form: ( text) the enclosed text will be ignored. The 
delimiting "close-paren" character ) is not a FORTH word and need not be 
preceded by a space, but must be separated from the following word by at 
least one space. 

Exercises 

1) Write a fast colon definition to triple the number on top of the stack. 
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2) Write a colon definition, {newpage}, which will print a form-feed, followed by 
"Page - ", and finally print the page number supplied on the stack. 
(Hint: you will need to use the word {EMIT} to print the form-feed). 

3) Create an array with 4 entries, set initially to the values, -10, 1, 10, and 1000. 
Define a word to calculate the address of the i'th entry, where i can be 0, 1, 2 
or 3. 

4) Define a word that will double the value of each of the current entries in the 
array of question 3. 

5) Use the technique described in section 3.6 to explain the operation of the 
following colon definition, and therefore deduce its overall stack effect: 

: example DUP * SWAP DUP * + ; 

(Hint: the stack initially needs two values on it). 
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4 
FORTH Structures 1, 
IF 

The one BASIC statement for which FORTH has no 
equivalent is 'GOTO' but the fact that FORTH is a fully structured language means 
that it doesn't need a 'GOTO'. This may seem an outlandish claim but it is not; 
indeed many experienced programmers feel that GOTOless programming is best. It 
makes for programs, they say, which are readable, self documenting and, above all, 
'structured'. What does 'structured' programming mean? Well, three features make 
a structured language: 

i) The ability to execute a sequence of operations, one after the other. 
ii) Conditional testing and the execution of either one sequence or another 

sequence depending on the result of a conditional test. 
iii) Repetitive execution of a sequence of operations, until some condition is met, 

or while a condition is true. 

FORTH has each of these requirements, the first has already been illustrated by all 
of the examples so far, it is, of course, a pre-requisite of virtually any programming 
language. FORTH provides the second requirement in the conditional structure IF 
.. ELSE .. THEN, and the third in a set of looping structures, the DO loop, UNTIL 
loop, and WHILE loop. This chapter describes the conditional IF structure, and the 
comparison and logical operations which accompany it. The looping structures are 
covered in detail in chapter 5. 

4.1 True or False? 
A word which will test the sign of a number, and confirm whether that number is 
negative or not, could be defined as follows: 

: Negative? 0 < IF Yes " THEN ; ok 

and is used by simply typing a number, followed by 'Negative?': 

-20 Negative? Yes ok 

20 Negative? ok 

A refinement of {Negative?} would be the inclusion of an {ELSE} clause: 

: Negative? 0 < IF Yes " ELSE No " THEN ; ok 

the new definition of {Negative?} supersedes the old one, so FORTH will now print 
a reply whether the number is negative, or positive: 

-1 Negative? Yes ok 

1 Negative? No ok 

Let us examine this new definition of {Negative?}. Upon execution the value 0 is 
first pushed onto the stack. The word {<} then compares the top two numbers on 
the stack and tests for the second less than the first (on top of the stack). {<} 
replaces these two numbers by a single number called a flag, which may only have 
one of two values, true or false. In this particular example the number on top of the 
stack is 0, so {<} is actually testing for the second number less than 0, i.e. negative. 
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The next word is -CI F> which pops the flag off the stack and causes the words 
immediately following to be executed if the flag were true, or those following the 
{ELSE} if the flag were false. In either case, execution continues after {then}, which 
must be included to properly terminate the {IF} structure even though the colon 
definition ends immediately after {THEN} as in this example. The {ELSE} clause is 
optional, as illustrated by the earlier version of {Negative} above. 

The Tess-than' word {<} is one of a special class of FORTH words called 
'comparison words', which usually occur immediately before the {IF} word. The 
formal definition of {<} is: 

< Cn 1 n2 -> flag) flag is set 'true1 if n1<n2, 

fa Ise otherwise . 

nl and n2 may be any single-precision numbers, and flag is also a number but one 
which represents the logical values true or false, according to the following 
convention: 

Logical value Numerical value 

true 1 

false 0 

A few examples will demonstrate the flag value: 

-2 4 < . 1 ok 

20 10 < . 0 ok 

-2 is indeed less than 4, so {<} returns the value 1, which represents 'true'. 20 is not 
less than 10, so {<} instead returns 0, representing 'false'. Notice that the numbers 
which are to be compared are entered in the same order as they would be in 
ordinary notation, if we wish to test for nl less than n2, we write in FORTH: 

nl n2 < 

4.2 The IF structure defined 
Figure 4.1 illustrates the general form of the IF structure: 

conditional words 

IF 

'true1 words 

ELSE 

'false' words 

THEN 

Figure 4.1 The full IF structure 

The conditional words must place a logical 'flag' value onto the stack and will 
usually involve 'comparison' words like {<}, but not necessarily, since {IF} will 
treat any non-zero number as 'true' but only the value zero as 'false'.1 

‘Programmers who go for 'minimal' solutions can take advantage ot this feature 
when testing for non-zero since such a test involves no comparison operation at all! 
For example: 

: nonzero? IF yes" THEN ; ok 

34 nonzero? yes ok 
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The 'true' words are executed whenever the value taken off the stack by C i F > is 
non-zero, or true, the 'false' words are executed if the value is zero, or false. The 
true words, or false words, may be any sequence of valid FORTH, including further 
(if .. else .. then} structures and in this way IF structures may be nested to 
virtually any depth. 

As illustrated by the first example in this section, the ELSE clause is optional and 
may be omitted so that the whole structure reduces to its simpler form, shown in 
figure 4.2: 

conditional words 

IF 

'true1 words 

THEN 

Figure 4.2 The simple IF structure 

Conditional structures, and indeed all of the structures which I describe in this 
chapter and the next, may only be used inside colon definitions. The reason for this 
is that such structures contain forward jumps which are not known until the whole 
colon definition has been compiled. 

Figure 4.3 shows the correspondence between an IF statement in BASIC and the 
FORTH IF structure, and emphasises in particular the re-ordering which is 
characteristic of FORTH! 

BASIC: IF A = 2 THEN PRINT "A=2" 
V-^ 

FORTH: A (a 2 = IF A = 2" THEN 

Figure 4.3 BASIC IF -* FORTH IF 

The FORTH in figure 4.3 would be part of a colon definition and assumes that the 
variable A has already been defined using {variable}. A new comparison word {=} 
is illustrated, {=} is similar to {<} in that it replaces the top two values on the stack 
by a single flag value, but in this case the flag is set to 'true' only if the two values 
are equal. 

4.3 Nested IF structures 
Figure 4.4 illustrates a colon definition which incorporates two IF structures, one 
nested inside the other. The word defined {Grade} will have the effect when 
executed of printing one of three grades, 'Fail', 'Pass' or 'Distinction' depending on 
a score on top of the stack: 

: Grade DUP 40 < IF 

." Fail" 

DROP 

ELSE 

70 < IF 

Pass" 

ELSE 

Distinction 

THEN 

THEN ; 

Figure 4.4 The definition of {Grade} 

( Less than 40 ) 

( 40-69 ) 

( greater than 70 ) 
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The whole of the second IF structure is encompassed within the ELSE clause of the 
outer IF structure, in the manner illustrated in figure 4.5: 

conditional A IF- 

AAAA 

ELSE - 

conditional B IF- 

BBBB 

ELSE- 

CCCC 

THEN- 
THEN- 

Figure 4.5 Nested IF structures 

If corresponding {if .. then} words are joined by lines, as in figure 4.5, then the 
lines should never cross, but remain nested one inside the other. If this is not so, 
then the program is not only meaningless but also invalid FORTH! It is common 
practice in FORTH to indent nested structures simply to aid readability by humans 
(computers have no trouble either way!). This is true also of other structured 
languages such as Pascal, but the BASIC programmer may find it unusual. 

In figure 4.5, if conditional A turns out to be 'true', then the AAAA words are 
executed, but if conditional A were 'false' then conditional B will be tested, 
resulting in either BBBB or CCCC to be executed. Looking again at our original 
{Grade} example in figure 4.4, if the number on top of the stack is less than 40 the 
first IF will be true, 'Fail' is printed, {DROP} is executed, and the program finishes. If, 
however, the number on top of the stack was 40 or greater, then conditional B will 
be tested to decide between 'Pass' or 'Distinction': 

25 Grade Fait ok 

54 Grade Pass ok 

70 Grade Distinction ok 

Notice the use of {DUP} preceding the conditional A test in {Grade}. This is to ensure 
that the score being tested remains on top of the stack for conditional B, if 
necessary. The inclusion of {drop} is to clear the extra value off the stack if it is not 
needed (that is if conditionalB will not be executed), so that the overall stack effect 
of {Grade} will be the same whichever route through the IF's is taken upon 
execution: 

Grade (n -> ) Print ’Fail’ if n<40, 'Pass’ if 

40<=n<70, or print 'Distinction' 

otherwise. 

This illustrates another point to be wary of in definitions involving conditionals: 

Make sure that, whichever route is taken through a conditional structure, the 
overall stack effect is the same. 

Adherence to this principle will avoid many confusing bugs! 

4.4 Logical Operators for Complex Conditionals 
Quite often an IF statement involves more than one comparison, combined by 
using logical operations - AND, OR etc. For example, to test if X lies between a 
lower and an upper limit we could write, in BASIC: 
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IF <X>10) AND (X<100) THEN .... 

which tests for X in the range 11-99. This could be written, in FORTH: 

x a IQ > IF 
x a loo < if 

THEN 

THEN 

but a much better, and simpler, solution is to use the word {and}, as follows: 

x a io > x a loo < and. if 

THEN 

Here we have written the two comparisons separately, CX a 10 > > leaves a flag on the 

stack, and the second comparison {X a 100 <} places a second flag onto the stack. 

These two flags are then combined by {AND}, to leave a single flag which will be true 

only if both comparisons were true. The operation of {AND} is described by the 

following: 

AND Cn 1 n2 -> n3) n3 = nl AND n2 

0 AND 0 = 0 

0 AND 1 = 0 

1 AND 0 = 0 

1 AND 1 = 1 

(0 = 'false', 1 = ’true1) 

Although {AND} is used in the above example to combine flag values, (0 or 1), it will 

perform a logical 'bitwise' AND between complete 16 bit numbers, as will the other 

FORTH logical operators, {OR} and {X0R}. We can easily demonstrate this as 

follows: 

5 ok ( = 101 binary ) 
6 ok ( = 110 binary ) 

AND . 4 ok ( = 100 binary ) 

Each bit in the binary equivalent of 4 is the result of separately ANDing the 

corresponding bits in the numbers 5 and 6. 

Returning to our IF example, we see that the comparisons are performed upon a 

variable X, and this has simplified the expression to a certain extent because the 

value of X may be fetched each time it is needed for a comparison using the phrase 

{x a}. 

More often, however, we shall need to perform a number of comparison tests upon 

the single value on top of the stack and this will require some stack manipulation. 

Suppose, for example, that we need to test if the number on top of the stack is less 

than 0 OR greater than 100. The condition test in front of an IF might appear: 

DUP 0< SWAP 100 > OR IF .... 

Notice that the joining of 0 and < is not a printing error! {0<} is simply a more 

convenient (and usually faster) version of the two word sequence {0 <}. FORTH 

defines a number of often used 'comparisons with zero', whose overall stack effect 

is, in each case, identical to the effect of {0} followed by the comparison operation. 

We can analyse the operation of the whole sequence above using the stack notation 
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described in the last chapter: 

Uord Stack Effect Comment 

DUP Cn -» n n) Duplicate top of stack 

0< (n n -> n f Lag 1) f lagl true i f n i negative 

SWAP (n f Lag 1 -> f Lag 1 n) swap n and flagl 

100 (flagl n --> flagl n 100) push 100 

> (flagl n 100 -> flagl f l a g 2) f l a g 2 true if n> 100 

OR (flagl f l a g 2 -> f t a g 3) OR the two flags 

The key operations in this sequence are the initial duplication, which gives us two 

copies of the number n - one for each comparison operation, and the {SWAP} which 

rearranges the stack so that flagl is preserved while the second comparison takes 

place - ready for the final {or>. {OR} has the effect of combining the two flag values 

so that the resulting flag3 will be true if either flagl OR flag2 (or both) were true. 

4.5 The Missing Comparison operations 
FORTH only defines three basic comparison operations; {<}, {=> and {>}, what 

about "less than or equal to", "not equal to" and so on? Well these operations are 

not defined in the standard system because we may very easily define them 

ourselves, if necessary, with the help of {NOT}, as follows: 

: <= > NOT ; 

: <> = NOT ; 

: >= < NOT ; 

In each case {NOT} reverses the truth value of the flag produced by the previous 

comparison operation, so that 'true' becomes 'false', and 'false' becomes 'true'. 

It is a characteristic of FORTH that rather than clutter up the dictionary with an 

exhaustive set of operations, those whose definitions are trivial, like the ones 

above, may be defined by the user as needed.2 

Another useful comparison operation is "unsigned less than", {U<}, which 

performs a 16 bit magnitude comparison. The operation can be used to compare 

unsigned numbers, as follows: 

1 60000 U< . 7 ok ( = true ) 

50000 40000 U< . 0 ok ( = false ) 

or we can make use of the fact that negative numbers appear to be large positive 

numbers if treated as unsigned, to simplify certain comparisons. For example, the 

phrase: 

100 u< 

has exactly the same effect as the phrase: 

DUP 0< NOT SWAP 100 < AND 

and tests if the number on the stack lies within the range 0-99. 

:Sceptical readers may ask "What about (0<). surely this operation could have 

been left out. and defined by the user when needed?" In fact in most FORTH 
systems (0<) is a more 'primitive' operation than {<>, which is defined as: 

: < - 0< ; 
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Finally, a useful combined stack manipulation and comparison operation is f?DUP>, 

which duplicates the number on top of the stack only if it is non-zero (true). {?dup> 

normally precedes Cl FI so that if the number on top of the stack is non-zero, then it 

is duplicated for use within the IF structure, alternatively if the number is zero, 

then the stack is left cleared. For example: 

: EXAMPLE ?DUP IF Non-zero number is" . THEN ; ok 

34 EXAMPLE Non-zero number is 34 ok 

0 EXAMPLE ok 

4.6 Summary and Exercises 
The following new words have been introduced in this chapter: 

Stack Manipulation: 

?DUP (n ^ n) or (n ^ n n) "query-dupe" 

Duplicate n only if it is non-zero. 

Comparison: 

< (n 1 n2 -» flag) "Less-than" 

Flag is true if nl is less than n2. 

= (nl n2 -> flag) "equals" 

Flag is true if nl equals n2. 

> (nl n2 -> flag) 
"greate i—t han" 

Flag is true if nl is greater than n2. 

0< (n -> flag) "zero-less" 

Flag is true if n is less than zero (negative). 

0= (n -> flag) "zero-equals" 

Flag is true if n is zero. 

0> (n -• flag) 
"zero-greater" 

Flag is true if n is greater than zero (positive). 

U< (uni un2 -> flag) "u—less—than" 

Compare the magnitude of the unsigned 16 bit numbers uni and un2, leaving 

the flag 'true' if uni is less than un2. 

NOT (flagl -» f Lag 2) 

Reverse the truth value, so that false becomes true or true becomes false. 
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Logical: 

AND < n1 n2 -> and) 

Leave the bitwise logical AND of nl and n2, 

0 AND 0 = 0 

0 AND 1 = 0 

1 AND 0 = 0 

1 AND 1 = 1 

OR (nl n2 -» or) 

Leave the bitwise logical OR of nl and n2, 

0 OR 0 = 0 

0 OR 1 = 1 

1 OR 0 = 1 

1 OR 1 = 1 

XOR (nl n2 —> xor) "x—or" 

Leave the bitwise logical exclusive-or of nl and n2, 
0 XOR 0 = 0 

0 XOR 1 = 1 

1XOR 0 =1 

1 XOR 1 = 0 

Control Structures: 

IF (flag -> ) 

Used in a colon definition in the form: 

flag IF ... ELSE ... THEN Or, 

flag IF ... THEN 

If the flag is true (non-zero) the words following IF are executed, and the 

words following ELSE are skipped. If the flag is false, then the words 

between IF and ELSE are skipped, and the words after ELSE are executed. 

The enclosed words may include control structures. 

else ( -> ) 

See IF above. 

THEN ( -> ) 

See IF above. 

Exercises 

1) Show how the stack will be affected by the following comparison operations: 

1 2 > 

—4 0< 

5 0> NOT 

2) Define a new word, {SIGN}, which will have the effect of printing one of three 
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messages 'positive', 'zero' or 'negative', corresponding to the sign of the 

number on top of the stack. 

3) What will be the results, in binary, of the following logical operations: 

1101101 1010001 XOR 

1010 101 OR 

45= 2 3 < OR 

4) How would you write the following BASIC IF statement in FORTH. Assume 

that the variables A and B have been pre-defined. 

IF NOT C(A = 2) AND <B = 2)) THEN LET A = 4 

5) Do the FORTH words {NOT} and {0=} have anything in common? 

6) Can you deduce the effect of the following colon definitions, when executed: 

: exl OVER OVER > IF SWAP THEN DROP ; 

; ex2 DUP IF DUP THEN ; 
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5 
FORTH Structures 2, 
Loops 

In the introduction to the previous chapter, I men¬ 
tioned that the third requisite of structured programming is the ability to execute a 
sequence of operations repetitively, in loops. FORTH provides three looping 
structures, the DO loop, the UNTIL loop and the WHILE loop. This chapter covers 
these three structures and then goes on to describe how 'nested' structures are 
constructed and debugged. 

5.1 The DO Loop 
The simplest (and most commonly used) of the three FORTH looping structures is 
the DO loop, used whenever we know beforehand, or can calculate, how many 
times a loop is to be repeated. Like the IF structure, DO loops may only occur inside 
colon definitions - so I will illustrate the DO loop with a simple definition: 

: Underline CR 16 0 DO " LOOP ; ok 

UnderLine 

-ok 

The two numbers 16 and 0 before the word {D0> tell the DO loop how many times it 
should be repeated. The first number is the 'limit' value and the second the 'index' 
value. The loop repeats (limit-index) times, which is (16-0 = 16) in this case, causing 
{." to be executed 16 times with the effect shown. 

The DO loop structure may be summarised as follows: 

limit index DO ...FORTH words... LOOP 

In this particular form of the DO loop, the limit value should always be greater than 
the index value, and the 'FORTH words' are always executed (limit-index) times. If 
the limit value is not greater than the index value, then the 'FORTH words' will just 
execute once, and the loop terminates. In either event, after the DO loop has 
finished, execution will continue of any words after {LOOP}. 

Since the word {DO} simply takes its limit and index values off the stack we need not 
actually supply these values in the colon definition, but could make one or both of 
them into parameters for the newly defined word. In practice, it is most useful to 
have the index value, but not the limit value, supplied inside the colon definition. 
For example: 

: Curses! 0 DO CR ." Oh Dear!" LOOP ; ok 

4 Curses! 
Oh Dear! 

Oh Dear! 

Oh Dear! 

Oh Dear! ok 

You really could type {1000 Curses!} if you wanted to! 

On reflection, it should be apparent that for most applications we must be able to 
use the index value as it counts up through the loop for calculations inside the loop. 
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FORTH does allow us to fetch the index value using the special word -CI >, but 
before describing {I > we must look in more detail at the way a DO loop is actually 
executed. 

5.2 The DO Loop in action 
During execution the DO loop makes use of a second special purpose stack called 
the RETURN stack to hold the index and limit values.1 

The sequence of events of a DO loop go something like this: 

i) The word {DO} is executed once only, and simply transfers the top two values 
on the normal stack, onto the return stack as shown in figure 5.1.2 

DO 

index \ empty 

limit 

Normal Stack 

NS empty index 

limit 

Return Stack 

Figure 5.1 The Stack effect of {do> 

ii) The words enclosed inside inside the DO loop are executed as per normal. 

iii) The word {LOOP} adds 1 to the index value on top of the return stack, and 
compares it with the second value on the return stack, the limit value. {LOOP} 

does not affect the normal stack in any way. 

If the new (incremented) index value is less than the limit value, then a jump 
occurs to just after the {DO}, for another loop, shown in figure 5.2. 

LOOP 

i ndex index+1 

limit limit 

return stack 

Figure 5.2 Stack Effect of {loop}, index+1 < limit 

If, on the other hand, the incremented index value equals the limit, then the 
two values are cleared off the return stack, and execution continues after 
{LOOP}, as shown in figure 5.3. 

'The RETURN stack is primarily used, by FORTH, to hold 'return' addresses 
during interpretation of the typed input. The return stack is, however, free for use 
inside a colon definition where it is used by the DO loop, as shown here. The 
FORTH programmer may also use the return stack inside colon definitions, as an 
extra stack, but with care! See chapter 8.3 for a note on this. 

"By 'normal' stack I mean the stack we have been using throughout. Some 
FORTH programmers refer to it as normal stack', 'parameter stack', data stack' or 
just plain 'stack'! 
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LOOP 

index =limit empty 

limit 

return stack 

Figure 5.3 Stack Effect of {loop}, end of loop. 

The overall effect of the DO loop on the return stack is thus to leave the return stack 
as it was before the DO loop - empty in the case illustrated above. Note that 
although the above description of the DO loop in action may seem complicated, in 
practice the FORTH programmer need not consider this since the DO loop takes 
care of itself. 

5.3 Loop Calculations 
The FORTH word -CI > mentioned earlier is normally only used inside a DO loop 
and has the special effect of making a duplicate copy of the current index value, (on 
top of the return stack), and pushing this onto the normal stack - thus making it 
available for calculation, for example: 

: Squares 0 DO 

II*. 

LOOP ; ok 

10 Squares 0 1 4 9 16 25 36 49 64 81 ok 

Again, it is instructive to analyse the operation of {Squares} using the stack 
notation, remembering that we are picturing the normal stack only here, not the 
return stack: 

Uord Stack Effect 

0 (n* -> n 0) 

DO (n 0 -> ) 

I <t i) 

I (i -> i i) 
* (i i -> i* 

(i * i -> t) 

LOOP ( -> *) 

The starred positions * in the diagrai 

Comment 

set index at 0 

set up Loop from 0 to n 

fetch counter 

fetch it again (same value) 

square it 

and print the result 

terminate loop 

indicate the overall stack effect of {Squares}: 

Squares (n -» ) Print n squares from 0 to n—1 

squared. 

Notice also that the stack is empty in the two positions indicated by t. It is 
important that any repetition of a loop should not cause an overall addition or 
removal of a number on the stack otherwise stack empty, or stack overflow (full) 
errors may result after multiple repetitions of the loop. It is generally good practice 
to ensure that the stack at the start and end of the loop, as in t, has the same 
number of values on it (zero in the above example) although there are exceptional 
cases where this rule is broken - by experienced FORTH programmers! 

There is clearly a great similarity between the DO loop and the BASIC FOR 
statement and BASIC programmers may find the comparison shown in figure 5.4 
helpful. 
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10 FOR A=0 TO 9 

20 PRINT A*A; 

30 NEXT A 

Squares 

10 0 DO 

II*. 
LOOP 

BASIC FORTH 

Figure 5.4 BASIC FOR and FORTH DO 

Notice in particular that the limit values are different in both cases. The BASIC FOR 
loop executes for A from 0 to 9 inclusive, but to achieve the same range in the 
FORTH DO loop requires setting the limit to 9+1 = 10. 

5.4 {+loop} for interesting increments 
A very necessary refinement of the DO loop is the use of the word {+loop> to 
specify loop step values other than +1. {*loop> is used in the place of {LOOP} and is 
similar, except that upon execution, {+L00P} pops the number off the top of the 
stack and adds this to the index counter before deciding if the loop has finished or 
not. So, for example, if we required a loop to step through the values 3, 6, 9,12, and 
15, the appropriate DO loop construction would appear: 

16 3 DO 

3 + LOOP 

Likewise if we should want to step down through a set of values, say for example, 
10, 5, 0, -5, -10, we would write: 

-11 10 DO 

-5 + LOOP 

Notice that the loop still finishes when the index value equals (or passes) the limit 
value. 

Of course, the 'step' value could be a value calculated within the loop, as in the 
following example: 

: Example 100 1 DO 

I . 

I +L00P ; ok 

Example 1 2 4 8 16 32 64 ok 

Thus providing a very neat way of looping through an interesting set of values, 
which would otherwise have to be calculated! 

5.5 Nested DO loops, and other Specialities 
Just like all of the structures, DO loops may be nested inside each other within the 
same colon definition. In fact, in case you had not guessed already, any of the 
FORTH structures may be nested inside any other - so that we may have IF's 
within DO loops, or vice versa. First, however, let us look at an example of nested 
DO loops: 
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: Timestable CR 11 1 DO 

11 1 DO 

J I * . 

LOOP 

CR 

LOOP ; 

Timestable 
123456789 10 

2 4 6 8 10 12 14 16 18 20 

3 6 9 12 15 ...etc. 

The word defined here {Timestable} has the effect, when executed, of printing a 

ten times table.3 

The operation of {Timestable} relies on the word {J} which appears inside the inner 
loop. {J} is similar to {1} except that {J} pushes the index of the next outer loop 
onto the stack. (Which is actually the third value down on the 'return' stack, but 
you don't really need to know this in order to use {J}). Thus for each repetition of 
the outer loop, which you can think of as ] stepping from 1 to 10, the inner loop 
repeats 10 times, that is, I steps from 1 to 10. Multiplying J and I thus gives us 1*1, 
1*2,1*3 .. 1*10, and then 2*1, 2*2, 2*3 .. 2*10, and so on up to 10*10 - in other words, 
a ten times table. In case the operation of {Timestable} still is not clear, here it is 
again together with an equivalent program in BASIC, in which I have deliberately 
chosen the FOR loop variables to be J and I respectively: 

BASIC FORTH 

: Timestable 

11 1 DO 

11 1 DO 

J I * . 

LOOP 

CR 

LOOP 

f 

Figure 5.5 Nested DO loops, BASIC and FORTH 

Remember that {J} and {1} in FORTH are not variables despite the fact that they 
are used rather like variables in this example. 

One further word which like {1} and {J} is used exclusively inside a DO loop is 
{LEAVE}, which allows a loop to be terminated prematurely. The effect of {leave} is 
simply to set the limit value which is second on the return stack equal to the current 
index value on top of the return stack. Thus, the next time that {loop} (or {+L00P}) is 
executed the loop will not be repeated, {leave} is normally placed inside an IF 
structure within the DO loop, as illustrated here: 

10 FOR J=1 TO 10 

20 FOR 1=1 TO 10 

30 PRINT J*I; 

40 NEXT I 

50 PRINT 

60 NEXT J 

■'Most FORTH systems define a special printing word {.R>, which is the same as 
{.} except that it prints the number second on the stack, right justified, in a field 
width given by the value on top of the stack. Replacing {.> by the phrase <4 .R) in 

{Timestable) will thus result in a neater columnar output format. For a definition of 

{. R) see chapter 8.4. 
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: example 10000 1 DO 

I . 

7TERMINAL IF 

LEAVE 

THEN 

LOOP ; 

This example assumes that a word {?terhinal> has already been defined, to have 
the effect of checking the keyboard to see if a key has been pressed. L?terhinal> 

should return the flag 'true' if a key has been pressed, 'false' if not. (Most FORTH 
systems do define such a word, although it is not in the FORTH-79 standard.) 

7TERMINAL ( -» flag) Set flag to true if a key 

has been pressed, false if not. 

Upon execution {example} will simply count from 1 to 9999, but may be halted at 
any time by hitting any key on the keyboard. A useful facility if you do not want to 
wait until the program completes normally! 

Before leaving this example, it is worth noticing the form of the nested IF structure 
inside the DO loop: 

do--- 

IF - 

THEN - 

LOOP - 

Joining the IF and THEN, and the DO and LOOP with lines shows that the IF 
structure is fully enclosed within the DO loop, and the whole structure is therefore 
correctly formed. If the lines should cross over, then the structure is informed, and 
will not work correctly, as shown by figure 5.6. 

DO IF LOOP THEN 

Figure 5.6 NOT a valid FORTH nested structure 

If you are ever unsure of the correctness of nested structures, then simply apply 
this Tine' test, by joining corresponding DO .. LOOP, IF .. THEN (or BEGIN .. 
UNTIL, and BEGIN .. REPEAT) words, and if any lines should cross, then the 
structure is probably informed. 

5.6 The UNTIL loop 
The DO loop is often referred to as a 'definite' loop because of the way that the 
number of repetitions is definitely determined before the loop starts. (Unless you 
use {leave} within the DO loop!) The UNTIL loop and the WHILE loop are known 
as 'indefinite' loops because in both cases the number.of repetitions cannot be 
known until during execution of the loop. In each case the continued repetition of 
the loop depends upon the result of a conditional test within the loop. 

The general form of the UNTIL loop is as follows: 

BEGIN 

FORTH words 

condition UNTIL 
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in which the 'FORTH words' are executed repetitively until the 'condition' is 'true'. 
The 'condition' will normally involve comparison words, like the conditional part of 
the IF structure - and, moreover, the 'condition' normally tests a result of the 
FORTH words inside the loop. The condition test must leave a 'flag' on top of the 
stack which will be tested by {UNTIL}. An example of a colon definition involving an 
UNTIL loop is as follows: 

: wait BEGIN 

KEY 

32 = UNTIL ; 

Another new word is introduced in this example {key}, which has the effect of 
waiting until a key has been pressed on the keyboard, and then leaves the ASCII 
value of the key on top of the stack: 

KEY ( -> char) Wait until a key has been pressed 

and leave its value on the stack. 

The 'condition' part of the UNTIL loop in {wai t> simply tests the value of the key 
pressed for the value 32 (='space'), and loops indefinitely if it was not. The overall 
effect of {wai t> will thus be to cause the system to wait until you press the 'space' 
key on the keyboard before responding. Here is {wait} described in more detail: 

Uord Stack Effect 

BEGIN ( -> ) 

KEY ( -> char) 

32 (char -» char 32) 

= (char 32 —* f lag) 

UNTIL (flag -> ) 

Comment 

Start loop (no stack effect) 

Get character from keyboard 

ASCII vaLue of 'space1 

flag is 'true' if char=32 

Loop back to BEGIN if flag 'false' 

5.7 The WHILE loop 
The structure of the WHILE loop is slightly more complex than the UNTIL loop and 
takes the general form as follows: 

BEGIN condition WHILE 

FORTH words ... 

REPEAT 

If the 'condition' is 'true' then the 'FORTH words' will be executed and the loop 
repeats (back to BEGIN), otherwise if the 'condition' is 'false' then the 'FORTH 
words' are not executed, and the loops ends. Or, to put it another way, everything 
between BEGIN and REPEAT executes repetitively while the condition remains 
'true'. Again the condition test must leave a flag on top of the stack which will be 
tested by {while}. 

The WHILE loop is often interchangeable with the UNTIL loop. We could, for 
example, rewrite our {wait} definition using a WHILE loop as follows: 

: wait BEGIN KEY 32 = NOT WHILE 

( do nothing ) 

REPEAT ; 

noticing that the logic of the condition is reversed - this loop repeats while the key 
pressed is not 'space'. 

Although the WHILE and UNTIL loops may seem to be almost identical, or even 
interchangeable, there is a crucial difference between them, namely, that the 
UNTIL loop always executes at least once, whereas the WHILE loop may not 
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execute at all - if the condition test turns out to be false first time. It is this difference 
which enables the FORTH programmer to decide which looping structure is 
appropriate to a given problem. 

5.8 FORTH Structures in action 
The order of execution of the words in a colon definition is strictly determined by 
the control structures within the definition. Furthermore, because we cannot have 
incomplete control structures (IF without THEN, DO without LOOP etc.), or 
GOTO, it is usually easy to determine the order of events within a colon definition 
at run-time. Let us take, as an example, the following definition: 

: BARPRINT DUP 0> IF 

0 DO *" LOOP ( true words ) 

ELSE 

DROP 

THEN 

CR ; 

There are only two major paths through {barprint}; either the true words or the 
false words of the IF structure will be executed, but never both. Figure 5.7 
illustrates these two paths. 

repeat at least once 

pathl: DUP 0> (IF) 0 (DO) CR ; 

path2: DUP 0> (IF) DROP CR ; 

Figure 5.7 The order of events within a colon definition 

The control structure words are not shown in figure 5.7 except where they affect the 
stack at run-time (and the word is shown bracketed). Two important things to 
notice are that execution always starts with the first word in the definition, Cdup> in 
the case above, and always ends with the terminating semi-colon. If Cbarprintj is 
included in another definition, for example: 

: BARTEST 11 -10 DO I BARPRINT LOOP ; 

when the word {barprint} is 'called' during the execution of (bartest), either pathl 
or path2 of figure 5.7 executes, but it is the final semi-colon that 'returns' execution 
back to (BARTEST}.4 

In this way, a complex program consisting of many 'levels' of colon definition still 
executes in an orderly and predictable manner. Providing that individual colon 
definitions are kept simple, making sure that a FORTH program executes in the 
right order presents no great problem. Simplicity is the key; FORTH programmers 
generally agree that a colon definition should never contain more than 3 or 4 control 
structures. 

There are occasions when we do have to 'break out' of a word during execution. We 
might, for example, encounter an irrecoverable error that makes continued 
execution impossible. FORTH provides two words, (abort} and (QUIT}, both of 
which will halt execution and return control to the keyboard, (abort} clears all 
stacks and usually prints a message; (OUIT} leaves the normal stack intact and 

'Chapter 9.5 will explain this mechanism in more detail. 
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prints no message. As an example, we could redefine the division operator {/} to 
check for division by zero, as follows: 

: / DUP ( duplicate the divisor ) 

IF ( if non zero ) 

/ ( perform the division ) 

ELSE 

Division by zero " ABORT 

THEN ; 

This new division operator may be incorporated into subsequent definitions and 
will behave just like the old {/}, except that whenever division by zero is attempted 
the message "Division by zero" is printed, and execution is halted. We could have 
used the word {quit} instead of {abort}, in which case the normal stack remains 
intact and may be examined, for debugging purposes, when the division by zero 
error occurs. 

5.9 Summary and Exercises 
The following new words have been introduced in this chapter: 

Control Structures: 

DO (n 1 n2 -* ) 

Used in a colon definition in the form: 

do .. loop or, 

DO .. +L00P 

DO sets up a definite loop with initial index value n2 and limit value nl. 

LOOP ( -» ) 

Increment the DO .. LOOP index by +1 and terminate the loop when the 
index equals (or is greater than) the limit value. 

+ LOOP (n -* ) "plus—loop" 

Add n to the DO .. +LOOP index using signed addition {+}, and compare the 
new index with the limit value. Terminate the loop if the index is equal to or 
greater than the limit, for n positive; or if the index is less than the limit, for n 
negative. 

I ( -► n) 

When used in the form DO .. I.. LOOP copies the index value onto the stack. 

J ( -» n) 

When used in the form DO .. DO .. J.. LOOP .. LOOP copies the index value 
of the outer loop onto the stack. 

LEAVE ( -> ) 

Set the limit value of a DO loop equal to the current index value so that the 
loop is terminated at the next LOOP or +LOOP. The index remains 
unchanged and any words between LEAVE and LOOP or +LOOP are 
executed normally. 

BEGIN ( -» ) 
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Marks the start of an UNTIL loop or a WHILE loop, and is used in a colon 
definition in the form, 

BEGIN ... flag UNTIL Or, 

BEGIN ... f lag WHILE ... REPEAT 

UNTIL ( f lag -> ) 

In a BEGIN .. UNTIL loop, if the flag is false then execution loops back to 
BEGIN. If the flag is true the loop is terminated. 

WHILE (flag-.) 

In a BEGIN .. WHILE .. REPEAT loop, if the flag is true then execution 
continues through to REPEAT and then loops back to BEGIN. If the flag is 
false the loop terminates and execution continues after REPEAT. 

repeat ( ) 

Mark the end of a BEGIN .. WHILE .. REPEAT loop as above. 

Input: 

KEY ( -> char ) 

Wait for a key press and leave the ASCII value of the character on the stack. 

Miscellaneous: 

ABORT (n 1 n2 _-> ) 

Clear the normal and return stacks and return control to the keyboard. 

QUIT ( -> ) 

Clear the return stack and return control to the keyboard. 

Exercises - 

1) Define a word which will have the effect of printing a block of stars, so that 
we could type: 

4 stars 
**** 

**** 
**** 
**** 
ok 

2) Write a program to add up all of the integers between a start value and an end 
value inclusive, where the start and end values are supplied as follows: 

1 10 suma 11 

3) Write a program to print a 'countdown' from a specified start value, to zero, 
with a delay between each count of approximately one second. Print an 
appropriate message at zero, for example, 'We have liftoff! 
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4) What will be printed out by the following loops: 

: exl 16 0 DO I . 3 +L00P ; 

: ex2 0 10 DO I . -1 +L00P ; 

: ex3 5 BEGIN DUP . 5 + DUP 100 > UNTIL . ; 

5) Write A program to print selectively only those numbers, between specified 
start and end values, which are exactly divisible by a third value, also 
specified at runtime. 

6) Devise a {dump} program which will print out the contents of memory, 
starting at a specified address, in blocks of 8 lines by 8 bytes. At the end of 
each block halt and wait for a key to be pressed, if the key is 'space' then 
continue, otherwise exit the program. (Hint: you will need two nested DO 
loops inside an UNTIL loop.) 
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6 
Editing, Saving and Loading 

FORTH programs 

We have now reached the stage in the book of having 
covered sufficient FORTH words to be able to start constructing programs of a 
reasonable and useful complexity. But clearly the method of direct entry (into the 
keyboard) used for trying out examples so far is inappropriate for complex 
programs under development. We really need to be able to edit, save and load 
programs onto disk or cassette in 'source' form (that is, as they would be typed in 
directly). FORTH does provide these facilities but in a novel way in which the disk 
or cassette acts like an extension of memory. Computer scientists call this 'virtual 
memory' and in practical terms it means that FORTH program 'source' can be very 
large, without taking up much of the system memory. 

6.1 The FORTH LOADing Concept 
FORTH divides disk or cassette into 'blocks' of 1024 characters each. Blocks are 
fetched one at a time into 'block buffers' in RAM, for editing or execution. Programs 
may, however, extend over any number of blocks, and a block can contain 
commands to load successive blocks so that the FORTH programmer need not load 
each block separately. 

'block buffer' 

Figure 6.1 The FORTH LOADing Concept 

Figure 6.1 illustrates this concept by supposing that a large FORTH program has 
been edited into blocks 100 to 105 inclusive. To load the whole program (which will 
almost certainly consist of a 'vocabulary' of colon definitions), the FORTH 
programmer may simply type: 

100 LOAD 
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The word { LOAD} means 'fetch the block specified by the number on top of the stack 
from disk or cassette into a block buffer, then pass it into the FORTH interpreter as 
if it had been typed in directly'. Any colon definitions in the block will thus be 
compiled and appended to the dictionary as per normal. If the phrase {101 LOAD} 

has been included at the end of block 100, then, instead of returning control to the 
keyboard, block 101 will be loaded immediately after block 100, using the same 
block buffer. Any number of blocks may be 'chained' together in this way, so that a 
large program can be loaded all in one go, without taking up more than 1 kbyte of 
system memory (for the block buffer). Figure 6.1 shows block 103 in the process of 
being loaded. 

The FORTH editor treats each 'block' as 16 lines by 64 characters - a convenient 
'screen' full - and so our 6 block example of Figure 6.1 could accommodate a 96 line 
FORTH program. (Some FORTH systems refer to a block as a 'screen' but the two 
terms are generally interchangeable.) There are no special rules about what a block 
can contain. Anything you can type in directly (which is everything!), may be 
edited into a disk or cassette block. Our complete program in blocks 100 to 105 will 
probably consist of a collection of colon definitions, variable and constant 
definitions, lots of comment, and some FORTH intended to be executed directly 
during LOADing. 

Here is what a single block might look like when LISTed. (The word {list} 'fetches' 
a block and then lists it as 16 numbered lines on the terminal.) 

0 
1 
2 
3 
4 
5 

6 
7 

8 
9 

10 
11 
12 
13 

14 

15 

( The Complete FORTH, 

: Squares 

10 0 DO 

II*. 

LOOP ; 

Squares 

: Times tab le 

CR 11 1 DO 

11 1 DO 

Chapter five examples ) 

( print 0 to 9 squared ) 

( try out Squares ) 

( print a ten times table 

J I * . 

LOOP 

CR 

LOOP ; 

Timestable ( try out Timestable ) 

) 

Line 0, by convention, consists of comments describing the content of the block. 
The two colon definitions of the block, on lines 2-5 and 8-14, are suitably indented 
for readability. Finally lines 6 and 15 will cause the newly defined words to be 
executed, for testing, again at LOAD time. 

Each line in the block will be loaded into FORTH strictly in order from line 0 
through to 15. This of course means that the content of a block - or series of blocks - 
cannot be in any order, but must follow the same rules that apply when typing in 
directly. In particular a newly defined word cannot be referred to until after its 
definition. 

Notice that everything in the block could be typed in directly, but obviously there 
are great advantages in editing lengthy definitions onto disk or cassette blocks, 
since if there are errors in the definitions, as there are in any program under 
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development, a simple 'edit' and reLOAD will allow us to rapidly try the definition 

again without tedious retyping. Another good reason for using blocks for program 

development is that a well commented and laid out block is self-documenting, and 

readable by other FORTH programmers. 

Most systems actually use more than one block buffer (normally two or three), and 

FORTH automatically decides which to use for a particular LOAD or LIST on a 

'least recently accessed' basis. To illustrate what this means let us suppose that we 

are developing a set of colon definitions in block 100 and FORTH has assigned 

block 100 to block buffer number i (in a system with two block buffers, i and ii). 

Should we then wish to LIST block 95 for reference, FORTH will fetch the block into 

buffer number ii, since buffer number i has been more recently accessed. Having 

examined block 95, we can resume editing block 100 by typing {100 list}, and block 

100 will not have to be re-read from disk or cassette since it is still contained in 

buffer i. In this way, disk or cassette transfers are kept to a minimum while 

developing one particular block. 

If, in the example above: we had typed {96 list), to examine block 96 instead of 

typing {100 LIST} to resume editing block 100, then buffer i would have been used 

for block 96, since buffer ii had been more recently used. But, before fetching block 

96 FORTH will automatically save the contents of buffer i into block 100 on disk or 

cassette, so that the newly edited block 100 will not be lost. Thus, the FORTH 

programmer does not have to explicitly 'save' the block. 

In pratice there are occasions when we do need to 'save' any newly edited blocks, 

such as before changing disks, or switching the power off, or just as a safety 

precaution before trying out some new (and hazardous) definitions! Accordingly 

FORTH does provide a 'SAVE-BUFFERS' command, and I shall examine this and 

other details later in the chapter. 

6.2 The Editor 
The FORTH-79 standard does not specify an editor vocabulary and, as a result, 

editors from different FORTH implementations often differ considerably. I will 

outline here a set of 'typical' editor words, (from a FORTH Implementation Group 

model). Readers with FORTH systems are recommended to consult their system 

documentation while reading this section, for more detailed information on their 

own editor words. 

On many FORTH systems the editor vocabulary, (that is, the collection of editing 

words), is not normally accessible without either first LOADing a set of disk or 

cassette blocks containing the editor, or on some systems simply typing EDITOR. 

Again, your system documentation should tell you how to invoke the editor 

vocabulary if it is not present already. 

Suppose that we would like to enter some newly devised FORTH into a block. First, 

we must locate an empty block, or one whose contents are no longer needed. (On 

some cassette based systems this is not necessary.) The best way to check that the 

block is suitable, and prepare it for editing, is to LIST the block, as follows: 

100 LIST 

0 
1 
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2 

3 

4 

5 
6 
7 
8 
9 

10 

11 
12 

13 

n 
15 

ok 

Usually the first thing we want to do is to enter new text into the block. This is best 

achieved line by line using the editing word {P>, for Put. Typing a line number, 

from 0 to 15, followed by {p>, and up to 64 characters of text terminated by the 

'return' key will have the effect of Putting the text into the specified line. (If the line 

did previously contain anything this will be overwritten by the new text.) For 

example: 

0 P ( Test block ) ok 

2 P : Squares ( print 0 to 9 squared ) ok 

3 P 10 0 DO ok 

4 P I I * . ok 

5 P LOOP ; ok 

Having typed in a few lines, we will probably want to list the block again to make 

sure they have gone in correctly. We could type -C100 list>, but it is easier to use the 

editor word {L>, which has the effect of listing the block buffer currently in use: 

L 

0 ( Test block ) 

1 

2 : Squares ( print 0 to 9 squared ) 

3 10 0 DO 

4 II*. 

5 LOOP ; 

6 
7 
8 
9 

10 
11 
12 
13 

74 

15 

ok 

If we want to look at just a single line in the buffer, the word {T>, for Type, is more 

convenient. For example: 

2 T 

2 : Squares ( print 0 to 9 squared ) 

ok 
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To insert a new line into the buffer between two old lines requires two commands. 

First of all <s> which Spreads the text in the buffer, inserting a blank line, and then 

{P> to Put the new line into the buffer. For example: 

2 S ok 

2 P Squares ( try out Squares ) ok 

will move the definition of Squares to start on line 3. The reverse operation, of 

Deleting a line and moving up all lower lines to close the gap, is accomplished by 

the word <d>. 

Finally, we could move a complete line from one place in the buffer to another, by 

using a single line scatchpad called the PAD. The Delete command Cd>, in fact, 

places the deleted line into the PAD, which may then be copied out of the PAD 

onto another line of the buffer using the Insert command Cl}, which Spreads the 

buffer, and then Inserts the text from the PAD into the new blank line. For 

example, to move the new line 2 into line 8, we would type: 

2 D ok 

8 I ok 

and a full Listing of the block now appears: 

L 

0 ( Test block ) 

1 

2 : Squares 

3 10 0 DO 

4 II*. 

5 LOOP ; 

6 
7 

8 Squares 

9 

10 
11 
12 
13 

H 
15 

ok 

Here is a summary of the editing words covered so far: 

P text (n -> ) Put text (terminated by 'return') into tine n. 

L ( -» ) List the block buffer currently being edited. 

T (n -> ) Type line n. Also copy it into the PAD. 

S (n —» ) Spread the buffer so that line n becomes blank. 

D (n -> ) Copy line n into the PAD then move up the lower 

lines to close the gap. 

I (n-> ) Spread the buffer then insert the text from the 

PAD into the new line n. 

PAD ( -» addr) Leave the start address of the PAD. 

(FORTH-79 word). 

These editing words are sufficient to allow FORTH to be entered and edited on a 

line by line basis. The FIG FORTH model editor does specify a number of additional 

words which allow more sophisticated editing including, for example, the 

( print 0 to 9 squared ) 

( try out Squares ) 
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alteration of 'strings' within lines without having to retype the whole line. 

Let us assume that we are ready to test the new FORTH in block 100. To load the 

block type: 

100 LOAD 

0 1 4 9 16 25 36 49 64 81 ok 

and {Squares} has compiled correctly (lines 2-5), and executed correctly as shown 

by its output.1 

Suppose, on the other hand, that we had mistyped one of the words in the 

definition for {Squares}, 'LLOP' instead of 'LOOP' in line 5: 

100 LOAD 

LLOP ? 

FORTH will print the offending word, together with the error message '?' meaning 

'word not found in dictionary'. The LOAD is then aborted and control returned to 

the keyboard, ready for us to edit and reLOAD the block. 

As soon as the block is completed and tested we will want to save it back onto disk 

or cassette. As I indicated earlier, this will happen automatically should we go on to 

LIST and edit further blocks; as soon as the buffer occupied by our completed block 

100 is needed for another block, then block 100 will be written back onto disk or 

cassette. Alternatively, if we have finished editing and testing we can save the 

completed block 100 by typing simply: 

SAVE-BUFFERS 

Newcomers to FORTE) are recommended to use this command regularly until they 

become familiar with 'block handling'! 

6.3 More BLOCK handling 
The three operations LIST, LOAD and SAVE-BUFFERS, together with an editor 

vocabulary, are normally all that is required for the creation of applications 

programs on disk or cassette. FORTH does provide an additional set of block 

handling operations which are useful for setting up block input-output under 

program control so that, for example, a program may use disk or cassette 'data' 

blocks. This section will cover these techniques and is not essential reading for the 

newcomer to FORTH. 

The word {BLOCK} is the basic block fetch operation (used to define LIST and 

LOAD); its effect is to fetch the specified block into the least recently accessed block 

buffer, if it is not already in memory, and to save the old contents of the block 

buffer first, if necessary, {block} does not process the block in any way after 

fetching it, but leaves the start address of the block buffer on the stack: 

BLOCK (n -> addr) 

This address may then be used to locate an item of data in the block, to extract the 

‘On some cassette based svstems the LOAD command has the effect of always 
reading the block off cassette regardless of whether the block is already in a buffer 

or not. If this is the case, an alternative command*is usually provided to load the 

block already in memory (ENTER or EXEC are two examples). 
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data, or modify it. As an example of the use of {block}, here is a definition for an 

{index} word, to print line zero of each of a set of specified blocks: 

: INDEX 

1+ SWAP DO 

I BLOCK 

64 0 DO 

DUP Ca EMIT 1+ 

LOOP 

DROP CR 

LOOP ; 

To index blocks 100 to 105 inclusive, type: 

100 105 INDEX 

The definition for {INDEX} uses the word {EMIT} which will be covered in detail in 

chapter 7. The important thing to notice here is the very simple way in which a 

block may be fetched, and data extracted from it. 

The {BLOCK} operation can equally easily be used to define operations to 'save' or 

'load' numerical data as a disk or cassette block, for example: 

CREATE data 80 ALLOT ( create a 40 element array ) 

: savedata 

data 

( save ’data1 in block 150 ) 

( address of data array ) 

150 BLOCK ( fetch block ) 

40 MOVE ( move data into block ) 

UPDATE ; ( mark as updated ) 

: loaddata 

150 BLOCK 

( load 'data1 from block 150 

( fetch block ) 

data ( address of data array ) 

40 MOVE ; ( move data from block ) 

The numerical data are stored in the block in 'binary' form, which is an efficient and 

compact use of storage. (We could fit 512 single length numbers into one block.) It 

does mean, however, that LISTing the block will not produce an intelligible output. 

The word {MOVE} is used to transfer the data to and from the block buffer; the stack 

description of {MOVE} is as follows: 

MOVE (addrl addr2 n -» ) 

where n (16 bit) numbers stored in memory starting at addrl are copied into 

memory at addr2 onward. The move starts by copying the number at addrl into 

addr2, then addrl+2 to addr2+2, and so on. 

Notice the use of the word {update} which has the effect of 'marking' the block 

buffer containing block 150 as 'updated'. This ensures that on the next LIST, 

LOAD, BLOCK or SAVE-BUFFERS operation which needs to use the same block 

buffer, the old contents will first be saved back into block 150 on disk or cassette. 

Whenever a block is edited it is automatically marked as 'updated', but when we 

alter a block under program control then we must explicitly update the block, hence 

the word {update}. 

If we should need to initialise a block, then the word {buffer} is more useful than 

{block}, {buffer} has the effect of simply assigning the least recently accessed 

buffer to the specified block, saving its old contents if UPDATEd, but not fetching 

( Loop through blocks ) 

( fetch a block ) 

( print line 0 ) 

( tidy stack, new line ) 
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the new block into the buffer. Its stack effect is similar to {block}: 

BUFFER (n -> addr) 

As an example here is a definition of a word to {clear} a block to contain all spaces: 

: CLEAR 
BUFFER ( assign a buffer ) 

1024 32 FILL ( fill it with spaces ) 

UPDATE ; ( and mark as updated ) 

To clear, for example, block 105, type: 

105 CLEAR 

and when the buffer contents are written out to disk or cassette (by SAVE- 

BUFFERS, for example), the old block 105 will be overwritten by the new empty 

block. (See chapter 7 for an explanation of {fill}). 

To conclude this section, three more words should be mentioned, {SCR}, {blk} and 

{EMPTY-BUFFERS}. 

{SCR} is a system variable containing the block number of the most recently LISTed 

block, and is useful when devising new editing words. {BLK} is another system 

variable, and contains the block number of the block currently being interpreted by 

LOAD. The FORTH interpreter (and the word {query} covered in chapter 7), uses 

{blk} to determine where the input stream should come from; if BLK is zero, then 

the input is from the keyboard, if BLK is non-zero, then input is from a 

block-buffer. 

{EMPTY-BUFFERS} has the effect of initialising all of the block buffers by marking them 

as 'empty', so that none of the buffer contents will be written out to mass storage, 

even if UPDATEd. This is useful if you should accidentally corrupt the contents of a 

buffer (while editing, for example), and you do not want to overwrite the old disk 

or cassette block. Simply type {empty-buffers}, and then LIST the block, to restore 

it as it was. 

6.4 Vocabulary Management 
As we have seen already a complete program (or 'application' to use FORTH 

terminology) generally consists of a collection of colon definitions, or to put it more 

precisely, a 'vocabulary' of new 'words'. When a vocabulary is LOADed, the words 

are compiled and added into the dictionary in such a way that the new words are 

'linked' into the existing dictionary. Figure 6.2 illustrates this linkage by showing 

two new dictionary entries; {ONE} and {two}. 

existing FORTH 

dictiona ry 

ONE 

TWO 

\J 
t) 
(—start dictionary searc 

free space 

h 

Figure 6.2 Dictionary Linkage 

All dictionary searches will start with the most recently defined word, {TWO}, and 

work backwards. If the word in the input stream is not one of the newly defined 
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words, then the search will continue in the standard FORTH dictionary; the linkage 

ensures that new words, and old, may be freely intermixed in the input stream. 

Any number of vocabularies may be LOADed and linked in this way, and a 

dictionary search will work through each vocabulary, in reverse order of LOADing, 

eventually working back into the standard dictionary. While this structure may be 

satisfactory, FORTH does provide a more elegant way of grouping vocabularies so 

that each is essentially separate but still easily accessible. The words, {vocabulary} 

and {definitions} will achieve this, as shown by the following examples: 

0 ( Test vocabulary management ) 

1 VOCABULARY FRENCH IMMEDIATE 

2 FRENCH DEFINITIONS 

3 : ONE un " ; 

4 : TWO deux " ; 

5 

6 FORTH DEFINITIONS 

7 VOCABULARY GERMAN IMMEDIATE 

8 GERMAN DEFINITIONS 

9 : ONE ein " ; 

10 : TWO zwei " ; 

Here we have defined two separate vocabularies, named {french} and {german}, 

both linked back into the FORTH vocabulary. The total dictionary linkage for this is 

shown in figure 6.3. 

Figure 6.3 A Two Vocabulary link structure 

The pointers A, B and C in figure 6.3 illustrate that there are three possible 'starts' 

for a dictionary search. We can start at point A, and miss out the two new 

vocabularies completely by writing: 

FORTH ok 

ONE ONE ? 

To start at point B, and search FRENCH and then FORTH, write: 

FRENCH ok 

ONE un ok 

or to start at point C, and search GERMAN and then FORTH, write: 

GERMAN ok 

TWO zuei ok 
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As illustrated here, different vocabularies can use the same name for different 

definitions. Each version of the same word is accessible simply by preceding the 

word by the name of its vocabulary. 

In FORTH terminology the vocabulary in which a dictionary search will start is 

known as the 'context' vocabulary, and is determined by the value of the system 

variable {context}. Words defined by the defining word {vocabulary} (such as 

{FRENCH} or {GERMAN}), will have the effect when executed, of setting the value of 

{CONTEXT} to the corresponding pointer (B or C). The word {forth} sets the FORTH 

vocabulary as the context vocabulary. 

Notice also the use of the word {immediate}, following the definitions of {french} 

and {GERMAN} on lines 1 and 7 of the example block above. This ensures that the 

words {french} and {GERMAN} will be always be executed, even when they occur 

within a colon definition; a necessary facility as we shall see shortly. (For a full 

explanation of {immediate} see chapter 9.5.) 

A second system variable, {current}, determines the vocabulary into which new 

definitions will be placed; the word {definitions} sets {current} equal to 

{CONTEXT}. Thus: 

FORTH definitions 

means that new definitions will be linked into point A in figure 6.3, and become 

part of the FORTH vocabulary. The new definition may still refer to other 

vocabularies, by altering the context during the definition, as follows: 

FORTH DEFINITIONS ok 

: TWO.TRANSLATE 

FRENCH TWO .11 = " 

GERMAN TWO ; ok 

FORTH TWO-TRANSLATE deux = zuei ok 

The words {FRENCH} and {GERMAN} are executed at compilation time, (and produce 

no compiled code), they simply alter the context so that the first {two} will be found 

in the FRENCH vocabulary, and the second {two} in the GERMAN vocabulary. 

6.5 Summary 
The following new FORTH-79 words have been introduced in this chapter: 

Mass storage input-output: 

LIST (n -> ) 

List the contents of block n. Set the variable SCR to n. 

LOAD (n -> ) 

Interpret block n by making it the input stream. (Preserve the pointers >IN 

and BLK into the present input stream so that it will be resumed when 

interpretation of the block ends.) 

SCR C -» addr) "s—c—r" 

System variable containing the number of the block most recently listed. 

BLOCK (n -> addr) 
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If block n is not already in memory, then fetch it from mass storage into the 

block buffer least recently accessed. (Saving the old contents of the block 

buffer first, if they had been modified i.e. UPDATEd.) Then leave the start 

address of the block buffer containing block n. 

update ( -> ) 

Mark the most recently referenced block buffer as having been modified so 

that its contents will automatically be saved onto mass storage should the 

buffer be needed (by LIST, LOAD or BLOCK) for a different block, or upon 

execution of SAVE-BUFFERS. 

BUFFER (n -> addr) 

Assign the least recently accessed block buffer to block n, first saving its old 

contents if they had been marked as UPDATEd. Do not fetch block n into the 

buffer, but leave the start address of the buffer. 

SAVE-BUFFERS ( -» ) 

Save all block buffers that have been modified (i.e. UPDATEd). 

EMPTY-BUFFERS ( -> ) 

Mark all block buffers as empty. Do not save any even if they are marked as 

UPDATEd. 

Miscellaneous: 

PAD ( —> add r ) 

Leave the start address of a general purpose 'scratch-pad' used to hold 

character strings for intermediate processing. The PAD has space for at least 

64 characters (at addr to addr+63). 

BLK ( -» addr) "b-L-k" 

System variable containing the number of the block currently being 

interpreted by LOAD as the input stream. If BLK is zero then input is from 

the keyboard. 

Memory: 

MOVE (addrl addr2 n -* ) 

Copy n 16 bit values starting at addrl into memory starting at addr2, 

proceeding toward high memory. If n is zero or negative do nothing. 

Vocabulary Management: 

VOCABULARY ( -> ) 

A defining word used in the form: 

VOCABULARY <name> 

to create (in the CURRENT vocabulary) a new vocabulary called <name>. 
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When <name> is later executed it will become the CONTEXT vocabulary, for 

dictionary searches, and using the word DEFINITIONS it may also become 

the CURRENT vocabulary for new definitions. All new vocabularies 

eventually link back to the FORTH vocabulary. 

CONTEXT ( addr) 

A system variable specifying the vocabulary in which dictionary searches will 
start during interpretation of the input stream. 

CURRENT ( -» addr) 

A system variable specifying the vocabulary to which newly defined words 

will be appended. 

FORTH ( -> ) 

The name of the primary vocabulary. The FORTH vocabulary is normally 

both the CONTEXT and CURRENT vocabulary unless changed using 

VOCABULARY and DEFINITIONS. Executing FORTH restores FORTH as 

the CONTEXT vocabulary. 

DEFINITIONS ( -> ) 

Sets CURRENT equal to CONTEXT so that subsequent definitions will be 

appended to the vocabulary previously selected as CONTEXT. 



7 
Number and String 
Input and Output 

We have already used the "dot" and "dot-quote" 
operations for number and text output respectively, and for number input we have 
relied on the fact that numbers in the input stream are automatically pushed onto 
the stack. FORTH does, however, provide an extensive additional set of 
input-output operations which are used in combination, rather than individually, 
to develop new input-output words for virtually any application. 

In an attempt to make the text of this (and the following) chapters as uncluttered as 
possible, many of the examples are presented without detailed (stack) analysis. All 
examples are, however, amenable to analysis using the stack notation of chapter 
3.6, if the reader should seek further clarification. 

7.1 Character input-output, the basics 
The simplest of the character output operations is the word {emit} which will print 
the character whose ASCII value is on top of the stack.1 

For example: 

65 EMIT Aok 

prints the single character "A", since 65 is the ASCII value for the character "A" (in 
decimal). To print a string of characters using {emit} just emit each character in 
turn, for example: 

89 EMIT 69 EMIT 83 EMIT YESok 

To avoid having to look up the ASCII value of each character, use the reverse 
operation {KEY}, which waits until a key has been pressed and then leaves its value 
on top of the stack: 

KEY ok ( After hitting 'return' press 'Y' ) 

. 89 ok 

The string printing word "dot-quote” {."} is much easier to use than {EMIT} for 
character strings: 

YES" YESok 

{EMIT} is more often used for printing control-characters, which cannot be included 
inside a dot-quote string. Three examples of these are already part of the standard 
vocabulary; {CR}, {SPACE} and {SPACES}: 

: CR 13 EMIT 10 EMIT ; ( print carriage return, tine feed ) 

: SPACE 32 EMIT ; ( print one space ) 

: SPACES 0 60 SPACE LOOP ; ( print n spaces ) 

These definitions illustrate also that much of the standard vocabulary is itself 
defined in FORTH! Further special printing operations can easily be defined like 
this if needed, for example: 

'A full description of ASCII is given in the glossary of i-ORTH terminology. 
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: TAB 9 EMIT ; ok 

: CLRS 12 EMIT ; ok 

CLRS TAB New page" CR 

( horizonta L tab ) 

( clear screen ) 

Neu page 

ok 

As a final example of the use of both -CEMiT> and {KEY}, suppose that we need to 
input a fixed length string into memory, from the keyboard, and later print the 
string. The best way to reserve space in memory to hold the string, is to {CREATE}2 a 
new dictionary entry and {ALLOT} space in it, as described in chapter 3.5: 

CREATE STRING 6 ALLOT ok ( 6 bytes of space ) 

The newly defined word {STRING} will leave the address of the start of the allotted 
space on top of the stack and can be used to define {getstr} and {printstr} as 
follows: 

: GETSTR CR ." ?" ( print a prompt ) 

STRING ( address onto stack ) 

6 0 DO ( loop thru characters 

KEY ( input a key ) 

DUP EMIT ( echo it ) 

OVER C! ( and store it ) 

1 + ( increment address 

LOOP 

DROP ; ok ( tidy up stack ) 

: PRINTSTR 

STRING ( address onto stack ) 

6 0 DO ( loop thru characters 

DUP CS EMIT ( fetch and print ) 

1 + ( increment address 

LOOP 

DROP ; ok ( tidy up stack ) 

GETSTR ( test GETSTR ) 

PABCDEFoAc 

PRINTSTR ABCDEFok ( print STRING ) 

{GETSTR} has two limitations; one is that all six characters must be typed in (and not 
terminated by the 'return' key); the other is that the 'backspace' key cannot be used 
to correct typing errors. These limitations could be overcome with a more 
sophisticated definition for {getstr}, but since FORTH already has a number of 
powerful 'buffered' string input operations it is more sensible to use one of these. 

7.2 String input-output 1 
In general the FORTH programmer has two options available for string input to 
programs; one is to take the string input from the original input stream (for which 
BASIC has no equivalent); the other is to halt the program and wait for a line of 
input to be typed into the keyboard (as in {getstr} above, or the BASIC 'INPUT' 
statement). The first of these two options uses the important operation {WORD} and 
is described in this section. Section 7.3 covers the second. 

2On non FORTH-79 systems you mav have to type <0 variable string 4 allot) to, 

' /V achieve the same effect. 
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{WORDJ may only be used inside a colon definition (I shall explain why shortly) and 
the following example illustrates its use: 

: PRINTNEXT 32 WORD COUNT TYPE ; ok 

PRINTNEXT sillyexample siltyexampleok 

{PRINTNEXT} has the rather pointless effect of printing the word typed in after it, but 
it does illustrate a number of interesting new operations. 

{WORD} has the effect, when executed, of copying characters from the input stream 
into a 'word buffer', up to a delimiter character. Additionally, the number of 
characters copied is left at the head of the word buffer. Figure 7.1 illustrates this 
diagrammatically. 

input stream-* PRINTNEXT si l lyexamp le 

current input pointer -f t—input pointer 

before {WORD} executes after execution 

contents of word buffer after {WORD} has executed, 

memory -> 

12 s i i t y e X a m p L e 

f— start address of word buffer 

Figure 7.1 {word} in Action 

{WORD} needs the delimiter character specified on the stack before execution, and 
leaves the start address of the word buffer on top of the stack after execution: 

WORD (char -> addr)3 

The effect of {32 word} in the example above is therefore to copy up to the next 
'space' character. The next word in the example {COUNT} simply fetches the count 
byte pointed to by the address on top of the stack, and increments the address so 
that it points to the actual start of the string. Both values are left on the stack: 

COUNT (addr -> addr+1 n) 

The stack is now ready for the word {type} which will print the string whose actual 
start address and character count are specified on the stack: 

TYPE (addr n -> ) 

The reason that {word} cannot be used outside a colon definition is that FORTH 
itself uses the operation {word} and, as a result, the word buffer, while processing a 
line of input. Typing: 

32 WORD si llyword COUNT TYPE 

will not have the expected effect because by the time {type} is being executed, the 
word in the*word buffer is not "sillyword" (it is, in fact "TYPE"!). 

Having established how {WORD} works We can devise a rather more useful operation 
{putstr}, to copy the next word in the input stream into a special string buffer 
which we define ourselves: 

'Some non FORTH-74 systems have a slightly different stack effect for twotto), in 

which the word buffer address is not left on the stack. If vour system is one of these 
then you can probably replace (bORD) in the examples in this section by the phrase 
(word here), but check vour documentation first! 
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( plenty of room ) CREATE STRING 40 ALLOT ok 

: PUTSTR 

STRING 40 32 FILL 

32 WORD COUNT 

STRING SWAP CMOVE ; ok 

( erase STRING ) 

( get word buffer ) 

( copy into STRING ) 

Two new words are introduced in this definition, {FILL) and {CMOVE}. {FILL} 

provides the useful function of filling a block of memory, byte by byte, with the 
same value. Its stack description is: 

FILL (addr n byte -> ) 

and its action is to fill the 'n' bytes starting at 'addr' with the value 'byte'. The 
phrase {string 40 32 FILL} has the effect, therefore, of filling the 40 bytes starting at 
the address returned by {string} with the value 32. In other words, the STRING is 
filled with spaces. 

The word {cmove} is the 'character block move' operation: 

CMOVE (addr 1 addr2 n -> ) 

The 'n' bytes starting at 'addrl' are moved to memory starting at 'addr2'. In the 
example above {CMOVE} moves the string placed into the word buffer by {WORD}, into 
our own STRING buffer. Of course, once the string has been copied there is no 
danger of it being corrupted by the FORTH interpreter, and it does not have to be 
processed in the same definition as {word}. 

With a definition for {printstr} we may test out {putstr} fully: 

: PRINTSTR 

STRING 40 -TRAILING TYPE ; ok 

PUTSTR teststring ok 

PRINTSTR teststringok 

{printstr} illustrates another useful string utility operation {-trailing} which has 
the effect of reducing the character count on top of the stack by the number of 
trailing spaces in the stored string (pointed to by the address second on the stack). 
{TYPE} will then only print the characters copied into the string (which must always 
be less than 40). A definition of {PRINTSTR} without the word {-TRAILING} would 
always print all 40 characters of the string. 

Before leaving this section, two additional words should be mentioned which 
might be useful when using {WORD}: {HERE} which returns the address of the next 
available dictionary location (in most systems this is the same as the address 
returned by {WORD}, the word buffer moves up as the dictionary grows); {>IN} is a 
system variable containing the character offset into the input buffer (the input 
pointer shown in figure 7.1). {word} advances the value of >IN while scanning the 
input stream. 

7.3 String input-output 2 
The second method of achieving string input in FORTH is to use either the word 
{expect}, or the word {QUERY}. Both have the effect of halting the program and 
waiting for a line of input to be typed into the keyboard, the only difference 
between the two is where the input is stored. 

The more general of the two is {expect}, which has the following stack description: 
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EXPECT (addr n ) 

{EXPECT} accepts characters from the keyboard into memory starting at 'addr , until 

either 'n' characters have been typed, or the 'return' key is pressed (whichever 

comes first). A very useful word {instr} can be developed using {expect}, to input 

characters into our STRING buffer, from the keyboard: 

: INSTR 
STRING 40 32 FILL ( clear string ) 
Cr."7" (print prompt) 

STRING 40 EXPECT ; ok ( expect up to 40 chars ) 

INSTR 
?This is a typed in line ok 

PRINTSTR This is a typed in Lineok 

The operation {QUERY} is identical in action to {EXPECT}, except that it expects up to 
80 characters, and places them in the FORTH terminal input buffer. {QUERY} is, in 
fact, another word used by the interpreter; it is the word that is executing whenever 
you are inputting normally to a FORTH system. The word {QUERY} is in many ways 
more useful to the FORTH programmer than {EXPECT}, because {QUERY} may be 
used together with {WORD} to 'parse' the typed input (that is, split it up into separate 

words). 

Suppose, for example, that we are writing a program involving a 'question and 
answer' dialogue between computer and user (as employed in games programs), 
and the user must type in three replies on one line, each separated by commas. 
Using the powerful combination of {QUERY} and {word}, we may devise a definition 
to achieve this, and place each of the three replies in a separate 'string', as follows: 

CREATE 1 reply 10 ALLOT ok < define reply strings ) 

CREATE 2reply 10 ALLOT ok 

CREATE 3reply 10 ALLOT ok 

: GETREPLIES 

1 rep ly 10 32 FILL ( clear each string buffer ) 

2reply 10 32 FILL 

3rep ly 10 32 FILL 

CR ? " ( newli ne and prompt ) 

QUERY ( get i nput from user ) 

44 W0R D ( fetch first word ) 

COUNT 1 rep ly SWAP CM0VE ( move into 1 reply ) 

44 WORD ( fetch second word ) 

COUNT 2reply SWAP CM0VE ( move into 2reply ) 

1 WORD ( fetch third word ) 

COUNT 3 rep ly SWAP CM0VE ; ok ( into 3reply ) 

GETREPLIES 

’One,Tv io, Three ok 

1 reply 10 TYPE One ok ( print each reply ) 

2reply 10 TYPE Tuo ok 

3repLy 10 TYPE Three ok 

In practice {GETREPLIES} would be incorporated into other definitions to make up 
the whole program. The delimiter character used for the first two replies is 44, the 
ASCII value for a comma, but for the third word the delimiter is 1, which has the 
effect of causing all of the remaining characters up to the end of the line to be copied 
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by {word}. Notice also that the three different reply strings are given names that 
differ in the first character rather than the last. This is as a precaution against some 
FORTH systems in which only the first three or four characters are saved in the new 
dictionary entry, in which case reply 1, reply2 and reply3 would be indistinguish¬ 
able. 

Two additional features of {QUERY} are worth noting. The first is that since {query} 

uses the terminal input buffer, anything previously in the buffer will be 
overwritten, including FORTH input. Thus in 

GETREPLIES This will not work" 

{GETREPLIES} will execute correctly, but anything following it will not execute. The 
second is that if {BLK} (described in chapter 6) is non-zero then {QUERY} will attempt 
to fetch input from a disk or cassette block. This may be used to advantage should 
we require string input from a disk block at run time. 

7.4 Number Bases 
A feature that is common to all number input-output operations, which we have 
not yet exploited, is that the 'base' or 'radix' may be altered from its usual default of 
base 10 (decimal). Whenever a number is being input, or output, its base is 
determined by the current value of the system variable {BASE}. Radix conversion is 
therefore very easy in FORTH, and requires only the definition of words to alter the 
value of {BASE}. Two examples are: 

DECIMAL ok 

: HEX 16 BASE ! ; ok 

: BIN 2 BASE ! ; ok 

The new words defined above, {HEX} and {BIN}, will have the effect when executed 
of altering the radix for number input and output to base 16 (hexadecimal), or base 
2 (binary) respectively. Notice the precaution of typing DECIMAL before compiling 
HEX and BIN, to ensure that the numbers 16 and 2 really are treated as decimal 
numbers, {decimal} is a pre-defined word which sets the value of {BASE} to its 
normal value of 10, for decimal number input and output. 

Using {HEX} and {bin} we may perform radix conversion, for example: 

DECIMAL ok ( check we're in decimal ) 

16 HEX . 10 ok ( 16 decimal = 10 hex ) 

3FF DECIMAL . 1023 ok ( 3FF hex = 1023 decimal ) 

9 BIN . 1001 ok ( 9 decimal = 1001 binary ) 

10101 DECIMAL . 21 ok ( 10101 binary = 21 decimal ) 

The unsigned print operation {U.} is more useful than {.} for the conversion of 
negative numbers: 

-1 HEX U. FFFF ok ( -1 decimal = FFFF hex ) 

FFFF DECIMAL U. 65535 ok 

The last example is perfectly correct, since the signed number -1, and the unsigned 
number 65535 (decimal) are both represented internally by the same 16 bit number! 

It is not unusual, while using different number bases, to lose track of exactly which 
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base you are in. Unfortunately, typing: 

BASE a . 10 ok 

does not help at all, because it will always produce the result 10 whatever base we 

happen to be in! In HEX, for example, BASE equals 16 (decimal), but this will be 

printed as 10 (hexadecimal). We can overcome this problem with a special 

definition: 

: ?BASE 

BASE a 

DUP 

DECIMAL . 

BASE ! 

; ok 

which may be used at any 

HEX ?BASE 16 ok 

BIN ?BASE 2 ok 

DECIMAL 7BASE 10 ok 

A novel, but often very useful, feature of the unlimited range of number bases in 

FORTH, is that short strings can be treated as numbers, in base 36. Any string from 

"A" to "ZZZ" can be represented as an unsigned single length number in base 36, 

which means that 1, 2 or 3 character string comparisons could be performed by 

ordinary arithmetic operations. If we go to double precision, then the useful range 

extends to 6 character strings. As an example, here is an array of short strings 

defined as if it were a number array: 

DECIMAL ok 

: BASE36 36 BASE ! ; ok 

BASE36 ok 

CREATE DAYS SUN , MON , TUE , WED , THU / FRI , SAT , ok 

( fetch current base ) 

( duplicate it ) 

( print it in decimal ) 

( and restore the o Ld base ) 

time as follows: 

DECIMAL ok 

: .DAY ( print day of 

BASE 3 SWAP 

2 * DAYS + 3 

BASE36 U. 

BASE ! ; ok 

3 .DAY UED ok 

6 .DAY SAT ok 

numbered 0-7 ) 

( save current base ) 

( fetch the day ) 

( print it ) 

( restore old base ) 

week 

7.5 Alternative number input 
In the majority of FORTH programs number input is achieved using the stack. The 

values required by a program are pushed onto the stack before the program is 'run' 

(by quoting its name), and the program takes them off the stack during execution. 

There are occasions, however, when a more conventional type of number input is 

needed, where a program halts and waits for a number to be typed into the 

keyboard before continuing. (Like the BASIC 'INPUT' statement, when used for 

numerical input.) 

Although FORTH does not provide a 'numerical INPUT' type of operation in the 

basic dictionary, we can easily define one ourselves using the buffered input of 
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section 7.3, and the word {convert}, {convert} will convert an ASCII string stored 
in memory into a double precision number on the stack. All we need to do is get a 
line of input from the keyboard into memory, using {expect} or {query}, and then 
{CONVERT} the string into a number, as follows: 

: INPUT 

0 0 
CR ?" 

QUERY 

1 WORD 

CONVERT 

DROP DROP ; ok 

The detailed stack effect of {convert} 

( double zero onto stack ) 

( print a prompt character ) 

( get a line of input ) 

( copy all of it to word buffer ) 

( convert to a number ) 

( tidy up the stack ) 

is as follows: 

CONVERT (d1 addrl - d2 addr2) 

The string whose length byte is pointed to by addrl is converted to a double 
precision number, which is added to dl and left on the stack as d2. addr2 contains 
the address of the first non-convertible character. The double zero in the definition 
for {input} is the initial value dl, and the final {drop drop} clears off addr2, and the 
top half of d2 to leave a single precision result on the stack.4 (See chapter 8 for a 
detailed description of how double precision numbers are stored on the stack.) 

To use {INPUT} simply include it in a program wherever number input from the 
keyboard is required. {INPUT} will wait for a number to be typed in (terminated by 
'return'), and leave the number on top of the stack: 

INPUT < -> n) Input n from the keyboard 

Here are some examples of the use of {INPUT}: 

INPUT 

71234 ok ( type in "1234" return ) 

. 1234 ok ( print using "dot" ) 

BASE36 ok 

INPUT 

7YES ok 

U. YES ok 

( go into base 36 ) 

( type in "yes" return ) 

( print using "u-dot" ) 

DECIMAL ok ( back into decimal! ) 

The final example shows that {convert} also uses {base} to determine the base of 
the string being converted, altering {BASE} will allow numbers in bases other than 
decimal to be {input}. 

7.6 Summary 

The following new words have been introduced in this chapter: 

Character input-output: 

EMIT (char—») 

4Some FORTH systems have a slightly different word with the same function 
called (number), whose stack effect is (addr—*d). To modify (input) to use (number) 

instead of (CONVERT) remove the initial (0 0), and one of the final (drop)s. 
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Print the character whose ASCII value is on the stack. 

space ( -> ) 

Print a single space. 

spaces (n -> ) 

Print n spaces. Do nothing if n is zero or negative. 

TYPE (add r n -> ) 

Print the n characters stored at addr upwards. Do nothing if n is zero or 
negative. 

COUNT (addr -* addr+1 n) 

Fetch the character count of the string pointed to by addr. Add one to addr to 
point to the actual start of the string and leave the address and character 
count on the stack in TYPE form. Range of n is 0..255. 

-TRAILING (addr nl addr n2) "dash-trailing" 

Reduce the character count of the string starting at addr from nl to n2 to 
exclude trailing spaces, nl must be positive. 

EXPECT (addr n ) 

Transfer characters from the keyboard into memory starting at addr until 
either n has been received or 'return' pressed. Do nothing if n is zero or 
negative. One or two nulls (zero bytes) are added to the end of the string in 
memory. 

QUERY ( -> ) 

Transfer characters from the keyboard into the terminal input buffer until 
either 80 characters have been received or 'return' pressed. WORD may then 
be used to process this text if >IN and BLK are set to zero. 

WORD (char -> addr) 

Copy characters from the terminal input buffer into the word buffer starting 
with the first non-delimiter character until the next delimiter char, or until the 
input stream is exhausted. The character count byte is left at the head of the 
string, pointed to by addr. If the input stream was empty when WORD is 
called, then leave a zero count byte. 

Number input-output: 

BASE ( -► addr) 

System variable containing the current number base for all number 
input-output operations. 

DECIMAL ( -► ) 

Set the input-output number base to ten (decimal). 

CONVERT (d1 add r1 -» d2 addr2) 

Convert the string starting at addrl + 1 into a double number in the current 
base, adding this to dl to leave the result d2. addr2 is the address of the first 
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invalid character (according to the base). 

Memory Operations: 

CMOVE (addrl addr2 n -* ) "c—move" 

Move n bytes from addrl upwards to addr2 upwards. Do nothing if n is zero 
or negative. 

FILL (addr n byte —» ) 

Fill memory from addr to addr+n with the value byte. Do nothing if n is zero 
or negative. 

Miscellaneous: 

HERE C -* addr) 

Leave address of next available dictionary location. 

>IN ( addr) "to—in" 

System variable containing offset into the current input stream. 
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8 
Double Precision 

and beyond 

This chapter describes a number of interesting 'num¬ 

ber' topics including double and mixed precision arithmetic, and formatted number 

printing. The chapter goes on to show how a useful 'fixed point decimal arithmetic' 

vocabulary could be developed. 

Any references to the FORTH-79 extension word set (i.e. double precision stack 

manipulation etc.), are accompanied by definitions for these words for the benefit 

of those whose systems do not include them.1 

8.1 Double Precision Numbers 
In chapter 1, I mentioned that FORTH has the facility for double precision (32 bit) 

arithmetic, thereby giving a much extended range of numbers. To be more specific, 

signed double precision numbers can have values within the range: 

-2,147,483,648 to 2,147,483,647 (decimal) 

and unsigned double numbers can have values within the range: 

0 to 4,294,967,295 (decimal). 

FORTH employs a simple and elegant method for telling the difference between 

single and double precision numbers in the input stream; if a decimal point2 

appears anywhere in a number, then the number will be interpreted as a double 

precision number and either pushed onto the stack, or compiled if it is within a 

colon definition. Typing, for example: 

DECIMAL ok 

1000000. ok 

will have the effect of pushing the double precision number 'one million' onto the 

stack. To pop the number off the stack and print it we may use the double precision 

print operation CD.}3, as follows: 

D. 1000000 ok 

The decimal point used to tell FORTH that "this is a double number", when 

inputting, is not printed by {D.>; although we could use the number formatting 

which I describe later in this chapter to include the decimal point, if required. 

Further, the decimal point in the input number has no significance beyond simply 

indicating that the number should be read as double precision. For example in: 

'Note that you can easily check if your system conforms to the FORTH-79 
standard, just type (79-standard). 

“Some systems will recognise a double number if it contains any of the characters 
"I" or 

If your FORTH system does not have {D.}, then use the definition at the end of 
section 8.4 to define it. 
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-0.010 D. -10 ok 

-10. 0. -JO ok 

both -0.010 and -10 are interpreted as the double number 'minus ten'. Most 

FORTH-79 standard systems do, however, place a count of the number of digits 

after the decimal point in a variable {dpl>, so that -0.010 in the example above 

would have resulted in DPL=3, and -10. would set DPL=0.1 will show later how to 

use this extra information to build fixed point arithmetic operations. 

A double precision number takes up two 'cells' of the stack, with the upper 16 bit 

half of the number uppermost on the stack. Thus, if we print a double number 

using two single number print operations, we will get the following for a small 

double number: 

100. ok 

. 0 ok ( print upper half ) 

. 100 ok ( print lower half ) 

But if we try the same with a large double number the result will not be 

meaningful.4 For example: 

1000000. ok 

. 15 ok 

. 16960 ok 

The FORTH-79 standard specifies two signed double precision arithmetic opera¬ 

tions, "d-add" and "d-negate", and one double length comparison "d-less-than": 

D+ <d 1 d2 -> dsum) Add double numbers to give a double 

precision result. 

DNEGATE (d -» —d) Reverse the sign of the double number. 

D< (d 1 d2 -» flag) Flag set true if dl less than d2. 

In the stack descriptions here, d,dl etc. simply indicate signed double numbers, 

each taking up two stack cells. 

We may use -CD+> like {+>, but with double numbers. To add, for example, one 

million and two million, type: 

1000000. 2000000. D+ D. 3000000 ok 

{dnegate} may be used to define a 'double-subtract' operation, should we require it: 

: D- DNEGATE D+ ; ok 

2000000000. 1. D-D. 1999999999 ok 

to subtract 1 from two thousand million! Similarly any number of additional double 

number operations could be defined for a special application. Here is a selection: 

: 2DUP OVER OVER ; ( duplicate double number ) 

: 2DR0P DROP DROP ; ( drop double number ) 

: D0< SWAP DROP 0< ; ( test for negative doubLe number ) 

: D0= OR 0= ; ( test for double zero ) 

: D= D- D0= ; ( test for equal double numbers ). 

: DABS DUP 0< IF DNEGATE THEN ; ( make double number positive ) 

4We can explain this result as follows: 

15 • 65536 = 983040, add 16960 and we have 1000000 ! 
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8.2 Mixed Precision 
The FORTH-79 standard specifies four 'mixed precision' arithmetic operations. 

That is, operations involving a mixture of double and single numbers: 

*/ (n 1 n2 n3 -» quot) 

*/M0D (nl n2 n3 -> rem quot) 

U* (uni un2 -> udprod) 

Multiply nl by n2 to give a double 

precision intermediate result. Then 

divide this by n3 to give a single 

precision quotient. 

As above, but leave a single 

precision remainder as well. 

Multiply two unsigned single numbers 

to give an unsigned double result. 

U/MOD (ud un -> urem uquot) Divide the double number ud, by the 

single number un, leaving single 

precision remainder and quotient. 

A 11 unsigned. 

In the stack notation used here un represents an unsigned single length (16 bit) 

number and ud an unsigned double length (32 bit) number. 

The first two operations are included primarily to avoid overflow problems in 

calculations involving multiplication then division. As an example, suppose we 

need to calculate six-sevenths of a set of numbers. We could type: 

: Frac 6 * 7 / ; ok 

100 Frac . 85 ok 

10000 Frac . -790 ok ( wrong !! ) 

The first result, of 85, is perfectly correct. The second result is completely wrong. Its 

negative sign is a good indication of that. The reason for the error is that the result 

of multiplying 10000 by 6 is 60000, which is greater than the largest single precision 

number FORTH can handle (32767). Redefining {Frac} to use {*/> will, however, 

overcome this difficulty since the intermediate result of the multiplication will be 

held as a double length number. 60000 is, of course, well within the double number 

range: 

: Frac 6 7 */ ; ok 

10000 Frac . 8571 ok 

This new definition of (Frac) will correctly calculate six sevenths of any single 

length number. 

Another possible application of "times-divide" {*/>, is to represent decimal 

numbers in calculations. Take, for example, 'pi' whose value is approximately: 

3.1416 

We can define an operation which multiplies by pi, as follows: 

: *pi 31416 10000 */ ; ok 

and use this to define {AREA}: 

: AREA DUP * *pi ; ok ( radius squared times pi ) 

45 AREA . 6361 ok 

The remaining two mixed precision operations are the 'primitive' operations used 

to define all other FORTH multiplication and division operations, (including those 
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just described). Using them we may define further operations not present in a 
standard system. 

As an example, suppose we need a double precision multiplication, which will 

multiply the two double numbers on top of the stack, and leave a double result. To 

achieve this we can multiply the upper and lower halves of each double number 

separately, using Cu*}, and combine the partial products to produce the 32 bit 

result. Figure 8.1 shows how the operation works like a long multiplication: 

a b 

c d * 

d*bu d * b L 

d*au d * a L 0 + 

c*bu c*bl 0 + 

c*au c*al 0 0 + 

p q r s 

Figure 8.1 Double length long multiplication 

This diagram shows how to multiply the 32 bit number ab, (a is the upper half, b 

the lower half), by the 32 bit number cd, (c is the upper half, d the lower half), to 

produce the 64 bit result pqrs. Each of the four multiplications involved produces a 

32 bit result, whose upper half is indicated by u, lower half by 1. If we should only 

require a 32 bit result, then only the first three multiplications are needed and pq 
need not be calculated. 

By far the easiest way of developing a double multiply on the basis of the algorithm 

just described, is to use four variables to hold the 16 bit halves, a,b,c and d, as 
follows: 

VARIABLE a ok ( top number. upper half ) 

VARIABLE b ok ( top number. Lower half ) 

VARIABLE c ok ( second number. upper half 

VARIABLE d ok ( second number. Lower ha If 

: 0* a ! b ! c ! d ! 
d a b a U* 

d a a a U* DROP + 

c a b a U* DROP + r ok 

6000. 12000 . D* D. 72000000 ok 

-5000004. 2 . D* D. -10000008 ok 

While this solution is not as fast as if it had been written using no variables but a 

great deal of stack manipulation instead, it has the advantage of being easy to write 

and understand! Notice also that because we are, in effect, truncating the result to 

give only the lower 32 bits the sign of the result is automatically correct. 

It is worth noting, before leaving this topic, that without much extra effort we could 

develop a 32 by 32 bit multiply, giving a 64 bit result, and then use this operation in 

turn to develop even greater precision should we require it. 

8.3 The Return stack for High Speed Definitions 
In a footnote in chapter 5 I mentioned that the advanced FORTH programmer may 
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use the return stack inside colon definitions as an extra pair of hands . FORTH 

provides three operations which allow access to the return stack, (pronounced 

"to-r", "r-from" and "r-fetch"): 

>R (n -> ) Pop n off the normal stack and push onto 

the return stack. 

R> ( -* n) Pop n off the return stack and push back 

onto the normal stack. 

RSI ( ^ n) Copy n off the return stack and push onto 

the normal stack. (The same as {1} in 

most systems.) 

These operations prove extremely useful, but they must be used with caution! In 

particular note that: 

i. A colon definition must have no overall effect on the return stack. 

ii. The return stack may be used inside DO loops, provided that the index and 

limit values held on the return stack are unaffected. (Unless that is the 

intention, as in {leave}!) 

As an example, suppose we need to define a word to add one to the fourth item 

down on the stack, without affecting the top three items. Using OR) we can move 

the top three numbers over to the return stack temporarily to expose the fourth 

number for the addition. Then with the {R>> operation move the top three numbers 

back onto the normal stack: 

: fourth+1 >R >R >R 1+ R> R> R> ; ok 

10 20 30 40 fourth+1 . ... 40 30 20 11 ok 

The overall effect on the normal stack will be as follows: 

fourth + 1 (n 1 n2 n3 n4 -» n 1 +1 n2 n3 n4) 

but the overall effect on the return stack is to leave it unaffected? We can see this by 

noticing that the definition of {fourth + 1} contains the same number of {>R} words 

as {R>} words. 

We could have avoided the use of the return stack altogether, in the example above, 

by using {ROLL}: 

: fourth+1 4 ROLL 1+ 4 ROLL 4 ROLL 4 ROLL ; 

but this is not only longer but very much slower, since {ROLL} is quite a complex 

operation. If {Fourth+1} is to be executed often, then the faster solution using the 

return stack is obviously preferable. 

Here are two more double number stack words which might be useful. Both utilise 

the return stack for temporary storage during execution: 

: 2SWAP >R ROT ROT R> ROT ROT ; ( swap top two double numbers ) 

: 20VER 2SWAP 2DUP >R >R 2SWAP R> R> ; (duplicate second double 
number on top ) 

(A definition for {2DUP} was given in section 8.1.) 

In addition a mixed precision divide is often useful: 

: M/MOD >R 0 RSI U/MOD R> SWAP >R U/MOD R> ; 

Stack effect: (ud un -> unrem udquot) 
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8.4 Formatted Number Output 

In many real applications the type of numerical output produced by the printing 

operation {. > would not be adequate. For a professional looking computer output, 

numbers really need to be printed in meaningful formats. For example, dates as 

20/01/82, or prices as $49.99. FORTH does provide a set of operations for building 

'specialised' number print formats like these examples, in which the format may be 
specified in a neat and readable way. 

Here are the formatting words summarised. (We do not need to know the detailed 

stack effects to use these words and so, for clarity, I shall postpone the stack 

descriptions of these words until the summary at the end of the chapter): 

<# Start a new formatted number string. 

# Insert the next digit of the number being printed 

into the formatted number string. 

#S Insert all remaining significant digits of the number 

into the formatted number string. 

HOLD Insert the character on the stack into the formatted 

number string. 

SIGN Insert a minus sign into the formatted number string 

if appropriate. 

Terminate the formatted number string ready for printing. 

None of these words actually causes anything to be printed out, their effect is only 

to prepare a number, digit by digit, ready for printing. The standard string printing 

operation {TYPE}, which we came across in the last chapter, is used to type out the 
string after it has been built by a combination of the above operations. 

The best way of seeing how number formatting works is with an example, so here 
is a definition for a 'price printing' operation: 

DECIMAL ok 

; ■$ <# # # 46 HOLD #S 36 HOLD #> TYPE SPACE ; ok 

1234. .$ $12.34 ok 

The sequence of operations during execution of {.$}, for the double number 1234, 
break down as follows: 

i. {<#} initialises a special character buffer (which is in fact the PAD 
downwards), ready to receive characters. 

ii. The first {#} converts the last digit of the number (4), into ASCII in the current 

base (decimal), and inserts this into the formatted number string character 
buffer. 

iii. The second {#} converts the next digit (3) and inserts this into the buffer. 

iv. The phrase {46 hold} puts the value 46 into the character buffer. This is the 
ASCII code for a decimal point. 

v. {#S} converts all remaining significant digits of the number (2 then 1), placing 
them into the character buffer. 

vi. {36 HOLD} puts the ASCII value for $ into the buffer. 

vii. {#>} terminates the completed string and leaves an address and character 
count on the stack ready for {TYPE}. 
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viii. Finally, {type space) prints out the finished text string in the correct order, 

starting with the last character inserted ($). Then a space is printed. 

The important features to notice are that the formatted number string is built 

backwards, starting with the lowest digit, and that the formatting operations are 

designed to operate upon double precision numbers. This last feature is particularly 

useful since it means that we have up to ten decimal digits available for special 

number formats, whereas the five digits of single precision are often not enough. 

An additional point is that the double precision number must be unsigned for 

conversion. If we wish to print negative, as well as positive numbers, then before 

the initial {<#) negative numbers must be converted to positive (with {dabs)), and 

the fact recorded ready for {sign). The easiest way to do this is with the phrase 

{SWAP OVER DABS) before the {<#) word. We may, for example, redefine our {.$) 

format using this technique, to cover debits as well as credits!: 

: .$ SWAP OVER DABS 

<# # # 46 HOLD #S 36 HOLD SIGN #> 

TYPE SPACE ; ok 

-12345. .$ -$123.45 ok 

The effect of {SWAP OVER dabs) on the (signed) double number on top of the stack will 

be as follows: 

SWAP (d low dhigh -> dhigh d low) Swap high and low halves of d 

OVER (dhigh d low -* dhigh d low dhigh) Dup licai te the high order 

part on top of the stack. 

DABS (dhigh d - dhigh ud) Convert d to unsigned. 

Later in the definition the word {SIGN) tests dhigh for negative (dhigh will have the 

same sign as the original signed double number d). {sign} then inserts a negative 

sign if dhigh is negative or does nothing if it is positive. 

One final improvement to our {.$) format would be to print right justified, in a 

field width supplied on the stack. This could be particularly useful if our application 

required us to print columns of figures, where it would be important for pounds 

and pence to be vertically aligned: 

: .$ >R ( save field width on rstack ) 

SWAP OVER DABS ( adjust for negative numbers ) 

<# # # 46 HOLD #S 36 HOLD #> ( build format ) 

R> OVER - SPACES ( print leading spaces ) 

TYPE SPACE ; ok ( and type number ) 

-0.01 CR 10 .$ ( print in field width of 10 ) 

-$0.01 ok 

123.45 CR 10 .$ 

$123.45 ok 

Here we are simply using the character count supplied by {#>} to calculate the 

number of leading spaces to print, which we do before the final {type). 

To close this section, here is a selection of format definitions which might be useful, 

including the date printing format mentioned at the start of the section. 

: .DATE <# # # 47 HOLD # # 47 HOLD # # 47 HOLD #> TYPE ; 
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( Print double number d with one trailing space ) 

: D. SWAP OVER DABS ( d -» ) 

<# #S SIGN #> 

TYPE SPACE ; 

( Print double number d right justified in field width n ) 

: D.R >R ( d n -* ) 

SWAP OVER DABS 

<# #S SIGN #> 

R> OVER - SPACES 

TYPE ; 

( Print single number nl right justified in field width n2 ) 

: .R >R S->D R> D.R ; C nl ri2 -> ) 

The word CS->D> used in the final definition here has the effect of converting a 

single length number to double length. If your FORTH system doesn't already have 

this word it can easily be defined as follows: 

: S->D DUP 0< IF -1 ELSE 0 THEN ; 

8.5 Fixed Point Arithmetic 
We have now covered all of the techniques necessary to be able to develop a useful 

fixed point arithmetic 'package'. First, we must recap on what exactly we mean by a 

'fixed-point' number; it is one in which the decimal point has a fixed position within 

the number, even while it is being used for calculations in the computer. Bearing 

this in mind, it seems likely that our standard double precision (integer) arithmetic 

operations will work equally well for fixed point numbers. The thing that makes 

them fixed point numbers is simply the way we input them and print them out. 

Suppose that we decide to 'fix' the decimal point four digits to the left. Our number 

range is then: 

+/-0.0001 to +/-99999.9999 

These numbers are perfectly acceptable input to FORTH. The number 0.0001 will be 

represented internally as just 1, and the number 99999.9999 will be represented as 

999999999. We could then type: 

99999.9999 -0.0001 D+ D. 999999998 ok 

to give a result representing the fixed point number 99999.9998. 

Using the number formatting techniques covered in the last section we can easily 

define a special fixed-point print operation, to use instead of CD.}, as follows: 

: F. SWAP OVER DABS 

<# # # # # 46 HOLD #S SIGN #> 

TYPE SPACE ; ok 

0.0005 0.0100 D+ F. 0.0105 ok 

100.0000 0.0001 D- F. 99.9999 ok 

and we now appear to have our fixed-point addition, and subtraction, but with one 

fatal flaw; we must always type in all four digits after the decimal point. If we do 

not then some wrong answers are likely to occur, for example: 

100.1 0.25 D+ F. 0. 1026 ok 
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which is nonsense! 

What is required here is an operation to 'fix' the input numbers so that whatever is 

typed in will be represented internally (on the stack) as we really intended. The 

number 100.8, for example, needs to be 'fixed' into 1008000 to be consistent with 

the chosen fixed point notation. The scaling factor clearly depends on how many 

digits were typed after the decimal point in the input number; information available 

from the variable {dpl> (see section 8.1). {dpl> can be used to calculate how many 

times the input number must be multiplied by 10 in order to fix it. Here is a 

definition that will do the job: 

: FIX DPL a 0< IF 

S->D 0 DPL ! 

THEN 

DPL 3 DUP 4 < IF 

4 SWAP DO 

10. 
LOOP 

( if number was single ) 

( convert to double ) 

D* ( perform scaling ) 

ELSE 

4 > IF 

Out of range" 2DR0P 

THEN 

THEN ; 

This definition has a number of additional refinements. One is that it will 'fix' single 

precision numbers (which have the effect of setting DPL to -1). The first IF clause 

converts these into double numbers with no digits after the decimal point (DPL=0), 

so that they will be correctly scaled by the following program. Another refinement 

is that numbers with more that four places of decimals will produce the error 

message "Out of range", but not corrupt any other numbers on the stack. 

We can now perform some useful calculations, for example: 

0.04 FIX ok 

0.1 FIX D+ ok 

0.567 FIX D+ ok 

0.0001 FIX D + ok 

10 FIX D+ ok 

F. 10.7071 ok 

We could now, if necessary, extend this package to include other operations. 

Multiplication, for example, is performed perfectly correctly by our tD*> operation 

of section 8.2, except that it yields a result 10000 times too large (because of the 

position of the decimal point). To get round this problem simply requires a routine 

to divide by 10000: 

: /10000 DUP >R ( 

DABS ( 

10000 M/MOD ( 

R> ( 

0< IF DNEGATE TH 

ROT DROP ; ( 

sign to return stack ) 

make unsigned ) 

mixed precision divide 

adjust sign of quotient 

EN 

and lose remainder ) 

) 

coupled with ID*}, to give a fixed-point multiply: 

: F* D* /10000 ; 

0.456 FIX 20 FIX F* F. 9.1200 ok 

-0.05 FIX 0.6 FIX F* F. -0.0300 ok 
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Of course, -C F*> will not work correctly for very large numbers, where the result of 

{D*> exceeds the double number range. To overcome this would require a double 
"times-divide" operator -C D*/ >, with a 64 bit intermediate result. 

To conclude this section it is worth noting that because our fixed-point arithmetic 

involves only whole-number calculations internally, it is very fast, certainly much 

faster than equivalent operations using floating-point arithmetic. 

8.6 Summary 
The following FORTH-79 Standard words have been covered in this chapter: 

Stack Manipulation: 

> R (n -» ) "to-r" 

Move n onto the return stack for temporary storage. Every >R must have a 

corresponding R> in the same control structure nesting level of a colon 

definition. 

R> < —» n) "r—from" 

Move n from the return stack to the data (normal) stack. 

R@ ( -* n) "i—fetch" 

Copy the number on top of the return stack onto the data stack. 

Comparison: 

D< (dl d2 -> flag) "d—Less—than" 

True if dl is less than d2. 

Arithmetic: 

D + (d1d2->dsum) "d—plus" 

Add double precision numbers. 

DNEGATE (d -> -d) "d-negate" 

Two's complement double number (reverse its sign). 

*/ (nl n2 n3 —> nquot) "times-divide" 

Multiply nl by n2, then divide by n3, leaving the quotient. The product of nl 

and n2 is calculated as a 32 bit double precision number. 

*/MOD (nl n2 n3 —> nrem nquot) "times—divide—mod" 

As */ but leave the remainder as well. The remainder has the same sign as nl. 

U* (uni un2 -> udprod) "u—times" 

Multiply unsigned single numbers to give an unsigned double precision 

product. 

U/MOD (ud un -» urem uquot) "u—divide" 

Divide double number by single, giving remainder and quotient. All 
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unsigned. 

Formatted Number Output: 

<# ( -> ) "Less-sharp" 

Initialise a formatted number conversion. 

# (udl -> ud2) "sharp" 

Generate from the unsigned double number udl, the next ASCII character 

and add it to the formatted number string. ud2 is the quotient after dividing 

udl by BASE, ready for the next digit to be generated. Use between <# and 

#>. 

#S (ud -> 0 0) "sharp—s" 

Convert all remaining significant digits of ud adding each to the formatted 

number string. Leave a double zero. If ud was initially zero add a single zero 

to the output string. Use between <# and #>. 

HOLD (char ) 

Insert char into the formatted number string. Use between <# and #>. 

SIGN (n ud —> ud) 

Insert an ASCII minus sign into the formatted number string if n is 

negative. Use between <# and #>. 

#> (ud -» addr n) 

"sha rp—g reater" 

End formatted number conversion. Drop ud and leave the address and 

character count of the formatted string ready for TYPE. 

Miscellaneous 

79-STANDARD ( -> ) 

Verify that system conforms to the FORTH-79 standard. 
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9 
Extending FORTH 

One of the most remarkable features of FORTH is the 

ability to define new 'defining words'. Recall that the effect of a defining word 

(such as {variable} or {;}), is to create a new dictionary e’ntry. Defining a new 

defining word means specifying a new type of dictionary entry and its action when 

executed. In real terms this gives us the ability to define completely new data 

structures such as 'string' variables, multi-dimensioned arrays, or even data 

structures consisting of mixtures of different data types. In addition, we may define 

new 'compiling words' which may be, for example, new control structures. 

9.1 Defining new Defining words 
We have already seen how to set up arrays using the words {CREATE} and {ALLOT}, 

followed by a special colon definition to calculate the address of the required array 

element. To recap the technique, here it is again for a 10 element array named X: 

CREATE x 20 ALLOT ( define the array ) 

: X x SWAP 2 * + ; ( calculate address ) 

While this technique is perfectly satisfactory, it does have the drawback that for 

each new array needed, these two lines of FORTH (or something very similar) have 

to repeated over again. 

We could really do with an entirely new defining word {ARRAY}, with the same 

overall effect as the two lines of FORTH above, but repeatable for different array 

names. We can indeed create such a defining word, with a special colon definition, 

and the word {does>}, as follows:1 

: ARRAY 

CREATE 2 * ALLOT ( create new dictionary entry ) 

D0ES> SWAP 2 * + ; ( runtime action ) 

To define a ten element array named X, we then simply type: 

10 ARRAY X 

and for another twenty element array Y, type: 

20 ARRAY Y 

To reference an element in the array, precede its name by the number of the array 

element (counting from zero). For example: 

4 X ? ( print 5th entry in X ) 

15 Y ? ( print 16th entry in Y ) 

The operation of {array} may not seem too obvious, so let us examine it step by 

step. When {array} is executed, the first thing to happen is that {CREATE} generates 

a new dictionary entry, whose name will be the next word in the input stream, 

(immediately after the word {array}); "X" and "Y" in the example above. The 

'Note that FORTH-78 and earlier standards use the word (xBUILDS) instead of 
(CREATE) in defining word definitions. If your system is one of these, then simply 
substitute <<builds> for (CREATE) in the examples in this chapter, and thev should 
work correctly. 
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number on top of the stack, (immediately preceding the word {array}), is then 

multiplied by 2 ready for {allot}, which will reserve the required amount of space 

for the new array. The next word in the colon definition is CD0ES>>; a special word 

only ever used when defining new defining words. {does>> has the crucial effect of 

specifying what new words defined by the new defining word will do when 

executed. 

If we had not included the phrase {doe$> swap 2 * +} in the definition of {ARRAY} 

above, then any new words defined by {array} would have the same effect as 

words defined by {CREATE}, that of pushing the address of the first entry in the 

space allotted. But because we have included the DOES> phrase, the words 

following {D0ES>} will be executed with this address on the stack. Thus typing: 

4 X 

will cause the words {swap 2 * +} to be executed with the address of the first element 

of X on top of the stack, and 4 second on the stack. The result of this will be to leave 

the address of the 5th element (numbered from zero) on top of the stack; exactly the 

same effect as the special colon definition in the example at the beginning of this 

section. 

The important point to notice here, is that the words after {D0ES>} are not executed 

when {array} is executed, but when words defined by {array} are themselves 

executed. 

The overall structure of a colon definition to define new defining words is 

summarised here: 

: new.def i ni ng_word 

CREATE ( compile time words ) 

D0ES> ( run time words ) ; 

When the new defining word is used to compile a new dictionary entry, the 

'compile time' words are executed; when this new dictionary entry is itself 
executed the 'run time' words are executed. 

To conclude this section, here is an interesting selection of 'standard' defining word 

definitions: 

: VARIABLE CREATE 2 ALLOT ; ( single length variable ) 

: CONSTANT CREATE , D0ES> 3 ; ( single length constant ) 

Most systems actually define {variable} and {constant} as machine code primitives 

but we could, for example, redefine {variable} so that an initial value is supplied 

when the variable is defined (as in earlier FORTH standards): 

: VARIABLE CREATE , ; 

Providing that your system has the word {C,} which is similar to {,} except that it 

compiles only the lower 8 bits (byte) of the number on the stack into the dictionary 

entry, then you can define byte length variables and constants: 

: CVARIABLE CREATE 1 ALLOT ; ( byte variable ) 

: CCONSTANT CREATE C, D0ES> C3 ; ( byte constant ) 

Finally, double precision variables and constants: 

: 2VARIABLE CREATE 4 ALLOT ; ( double length variable ) 

: 2C0NSTANT CREATE , , ( double length constant ) 
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D0ES> DUP 2 + a SWAP a ; 

An associated pair of double number store and fetch operations can easily be 

defined: 

: D! DUP >R ! R> 2+ ! ; ( d addr -» ) 

: 03 DUP a >R 2+ a R> ; < addr -> d ) 

9.2 The last word on ARRAYS 
There are a number of useful enhancements that can be incorporated very easily 

into the new defining word {array} of the last section. One is to check for 'index out 

of range'; another is to number the array elements from 1 rather than from 0. A new 

definition for {ARRAY} with these enhancements is as follows: 

0 
1 
2 
3 

4 
5 

6 
7 

8 
9 

10 
11 

ARRAY 

CREATE DUP , 

2 * ALLOT 

D0ES> 

SWAP 1- SWAP 

OVER OVER 

a U< NOT IF 
Array 

QUIT 

THEN 

2 + 

SWAP 2 * + ; 

( store array size ) 

( and reserve space ) 

( make index 0 upwards ) 

( duplicate index and addr ) 

( test for out of range ) 

range error" 

( skip array size ) 

( calculate address ) 

This new version of {array} is used just like the old one, for example: 

20 ARRAY table ok ( define a twenty element array ) 

0 table Array range error ( index out of bounds! ) 

21 table Array range error 

-1 5 table ! ok ( set the fifth element to -1 ) 

The compile time action has been modified slightly, to save the array size in the 

dictionary entry {dup ,} so that this can be used at runtime to check for index out of 

bounds. 

The runtime action splits into three distinct sections. The first line (after {does>}), 

simply reduces the index, which is second on the stack, by one {swap 1-swap}. This 

means that if we specify element 1 of the array we actually get the 0th element. 

Lines 5 to 9 inclusive perform the range checking. An interesting feature is the use 

of the unsigned comparison word {u<}. This will ensure that negative index values 

will also fail the test, since if negative numbers are treated as unsigned they appear 

as large positive numbers. The use of {U<} thus avoids two separate signed 

comparison operations. 

Line 10 adjusts the address on top of the stack to skip over the stored array size, 

and line 11 calculates the address of the required element, as in the earlier 

definition of {array}. 

The runtime code (lines 4-11) will, of course, execute every time an array defined by 

{array} is referenced, with a speed penalty because of the range checking. Since the 

range checking is only required while a FORTH program is under development, it 
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is common practice to remove it after the application is fully debugged. The 
reLOADed program will then run much faster. For example, the {array} definition 
above would reduce to: 

: ARRAY CREATE 

2 * ALLOT 

D0ES> 

SWAP 1- 2 * + ; 

To conclude this section here is a definition for {2DARRAY}, a new defining word to 
generate 2 dimensional arrays: 

: 2DARRAY CREATE 

DUP , 

* 2 * ALLOT 

D0ES> 

ROT 

OVER 3 * 

ROT + 

2 * + 2 + ; 

( save second index ) 

( reserve array space ) 

( fetch i1 to top of stack ) 

( muLtipLy by stored index ) 

( add i2 ) 

( calculate address of i1,i2 ) 

il and i2 refer to the two indices needed to pick out an element of the array (element 
il,i2), as illustrated here: 

A 4 2DARRAY square ( define a 4 by A array 'square' ) 

-1 00 square ! ( set element 0,0 equal to -1 ) 

This array contains 16 elements, numbered 0,0 through to 3,3. A good way to 
access each element in turn is with nested DO loops, as follows: 

: printsquare 

4 0 00 

4 0 DO 

J I square . 

LOOP CR 

LOOP ; 

( print whole of square ) 

( step from 0 to 3 ) 

( ditto ) 

( print element I,J ) 

9.3 A STRING variable 
An obvious candidate for a new defining word is a STRING variable. This would 
overcome the limitation of the string handling described in chapter 7, of having to 
use a fixed buffer area for all string operations, and would also allow the 
development of powerful string matching and comparison operations similar to 
those in BASIC. 

In order to devise a {string} defining word, we must first consider what string 
variables will contain. Character strings of course! But in addition it would be 
helpful if a string variable contained its maximum length, and its actual length. 
Figure 9.1 illustrates how a six character string variable would store the four 
character string "fred". 

The maximum length byte will be set up when the string variable is defined and 
will be used to check for 'string overflow'. The actual length byte will facilitate 
string manipulation, for example, the string printing word {type} can use this 
information. 
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6 4 <- — maximum, actual length bytes 

"f" "r" <- — stored string 

"e" "d" 

<- — empty space 

Figure 9.1 The proposed string variable structure 

Here is a definition for {STRING} along these lines: 

: STRING 

CREATE 

DUP C, 

0 C, 

ALLOT 

D0ES> 

2 + 

DUP 1- ca ; 

( store maximum Length ) 

( set actual length to zero ) 

( and reserve string space ) 

( start address of string ) 

( actual length byte ) 

To define a string variable A$, with space for a 20 character string, write: 

20 STRING AS 

The string variable A$ will leave two values on the stack, the start address of the 
string second, and the character count on top. This is exactly what is required by 
the standard string printing word {TYPE}, and so to print A$, we write: 

AS TYPE 

None of this is particularly helpful until we can input strings into string variables, 
and for this we really need two operations; {inputs} to input strings from the 
keyboard for interactive question and answer type of programs, and {PUTS} to set 
up strings inside programs. These two definitions turn out to be almost identical 
and so I omit detailed comments from the second: 

: INPUTS 

DROP 1- 

DUP 1- CS 

CR ? " 8UERY 

1 WORD 

HERE Ca 

< IF 

String too big 

DROP QUIT 

THEN 

HERE DUP Ca 1+ 

ROT SWAP CMOVE ; 

( address of count byte ) 

( maximum length byte ) 

( get string from keyboard ) 

( to HERE ) 

( actual length of string ) 

( maximum less than actual? ) 

( error message ) 

( clear stack and exi t ) 

( address and bytes to move ) 

( into the string variable) 

: PUTS 

DROP 1- 

dup 1- ca 

36 WORD ( get string following PUTS ) 

HERE Ca 

< IF 

String too big" 

DROP QUIT 

THEN 

HERE DUP Ca 1+ 
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ROT SWAP CMOVE ; 

The delimiter character supplied to {word} in {put$> is the ASCII value for the 
character Strings input using {put$> must therefore be terminated by "$", and 
can include embedded spaces. Here are some examples of the use of {inputs} and 
{PUTS}: 

20 STRING AS ok { define 20 character string AS ) 

AS INPUTS 

? test string ok 
( input front keyboard ) 

( terminated by 'return' ) 

AS TYPE test string ok ( print AS ) 

AS INPUTS 

*? this string is too long String too big 

AS PUTS another tests ok ( input from input stream ) 

AS TYPE another testok ( print AS ) 

An operation to compare two strings is a useful addition to our string handling 
vocabulary, and might be defined as follows: 

: -MATCH OVER OVER ( duplicate length and addr2 ) 

+ SWAP DO ( loop thru chars ) 

DROP 1+ DUP 1- CS { get char from strl ) 

I CS - DUP IF ( not equal? ) 

DUP ABS / LEAVE ( flag ) 

THEN 

LOOP SWAP DROP ; 

This operation "not-match" will compare two equal length strings, and has the 
stack effect: 

-MATCH (addrl n addr2 - flag) 

The two strings, both of length n, starting at addrl and addr2 are compared, 
leaving a flag value which is 'false' if the strings match, 'true' and positive if 
stringl>string2, or 'true' and negative if stringl<string2. This may be included in a 
{S=} definition as follows: 

: $= ROT OVER = IF ( string same length? ) 

SWAP -MATCH NOT ( attempt match then ) 

ELSE 

DROP DROP DROP 0 ( else false ) 

THEN ; 

An interesting application of {$=} which, incidentally, gives another example of 
GOTOless programming in FORTH, is in a colon definition to ask the user if he 
wishes to continue or not. The equivalent in BASIC is a familiar construction in 
games programs etc.: 

10 PRINT "Dp you want to continue (yes/no)"; 

20 INPUT AS 

30 IF A$="no" THEN END 

40 IF A$="yes" THEN 60 

50 GOTO 10 

60 .... 

The same thing in FORTH is: 
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10 STRING ANSWERS 

3 STRING YESS YESS PUTS yesS 

2 STRING NOS NOS PUTS no$ 

: CONTINUE? 

BEGIN 
Do you want to continue (yes/no) 

ANSWERS INPUTS ( get reply 

ANSWERS NOS S= IF QUIT THEN 

ANSWERS YESS S= 

UNTIL ; ( loop until the answer is 

II 

) 

yes ) 

Inserting the word {continue?} will cause a program to halt, and ask the question 
"Do you want to continue (yes/no)?". If the answer typed into the keyboard is "no", 
then the program will quit. If the answer is "yes", then the program continues. If 
the answer was neither "yes" or "no", then the question will be repeated. 

9.4 Self Modifying Data structures 
A remarkable consequence of FORTH's ability to define new defining words is that 
we may build 'intelligent' data structures; for example, arrays that automatically 
maintain averages, or lists that re-order themselves whenever any entry is altered. 

To take the first of these examples, suppose we have a 10 element array 'readings', 
defined using the word {ARRAY} of section 9.2. To compute the arithmetic average of 
the contents of this array requires adding together all 10 entries and dividing by 10. 
A special definition could easily be written to do this as follows: 

: average ( take average of array 'readings1 ) 

0 ( result=0 ) 

11 1 DO ( step 1 to 10 ) 

I readings 3 + ( add up each element ) 

LOOP 

10 / ; ( and divide by 10 ) 

If our FORTH application needed us to calculate an average like this often and for 
many different arrays then, to simplify the overall program, we should define a 
new defining word {*ARRAY} with the averaging function built into the DOES> part 

of the definition: 

: *ARRAY ( 's 

CREATE 

DUP , 

0 , 
0 DO 

0 , 
LOOP 

D0ES> 

DUP DUP 3 

SWAP 4 + 

OVER 0 SWAP 

0 DO 

OVER 3 

SWAP 2 

LOOP 

SWAP DROP SWAP 

OVER 2+ ! 

2+ SWAP 2 * + ; 

cial' array with running average ) 

( save array size ) 

( set 1 average1 to zero ) 

( step thru elements ) 

( defining and zeroing ) 

( get array size ) 

( point to start of array ) 

( step thru array ) 

+ ( add up ) 

SWAP ( bump up pointer ) 

( divide by array size ) 

( store average in element 0 ) 

( calculate address I 
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Arrays defined by {*array} may be used just like those defined by {array}, for 
example: 

10 *ARRAY readings ok ( 

10 1 readings ! ok ( 

20 2 readings ! ok ( 

1000 10 readings ! ok ( 

2 readings ? 20 ok ( 

one set of readings ) 

readings(1)=10 ) 

readings(2)=20 ) 

readings(10)=1000 ) 

print contents of readings(2) ) 

Which is exactly how we would expect a 10 element array, with entries numbered 
from 1 to 10 to behave. But typing: 

0 readings ? 103 ok 

will print the average of the values currently contained in the array 
( (10+20+1000)/10 = 103 ). This average will be calculated afresh every time the 
name of the array {r e a d i n g s} is quoted and will always be true however many times 
we might have altered the values stored in the array. 
For example: 

870 10 readings ! ok 
50 6 readings ! ok 

( alter readings(IO) to 870 ) 

( set readings(6) to 50 ) 

0 readings ? 95 ok ( new average is 95 ) 

and, of course, all arrays defined by {*array> will have this function built in! 

9.5 A Closer Look at the Dictionary 
All dictionary entries share the same basic internal structure. In FORTH 
terminology each part of a dictionary entry is known as a 'field' and every 
dictionary entry has four distinct fields; the name field, link field, code field and 
parameter field. Figure 9.2 shows the field structure of a dictionary entry named 
"EXAMPLE" - it doesn't matter whether {example} is a variable, constant or colon 
definition - the structure is the same in each case. 

Figure 9.2 The Field structure of a dictionary entry 

The name field contains the character count of the original <name> of the 
definition, followed by the characters of the name stored as ASCII bytes. The length 
of the name field thus depends on the length of the <name> and FORTH-79 
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specifies a 32 byte maximum name field, so that only the first 31 characters of a 

longer <name> will be stored." 
The character count takes up only the lower 7 bits of the first byte in the name field, 

which implies an absolute maximum of 127 characters in the original defined 

<name>. The top bit is the 'precedence bit' of which I will say more later in this 

section. 

The link field is a fixed length 16 bit cell containing the address of the name field of 

the previous dictionary entry. FORTH uses this to quickly search backwards 

through the dictionary when looking for a word. (The FORTH dictionary is what 

computer scientists would call a 'linked list'). 

The code field is another fixed length 16 bit cell, and contains the 'code pointer'. 

This is the address of the 'run-time' code which is executed when the dictionary 

entry is executed. It is the code pointer that distinguishes between variable, 

constant or colon definition since the 'action of the run-time code is different in 

each case. 

The following table summarises the action of the run-time code for each of the four 

basic types of dictionary entry: 

Defining uord Action of run-time code 

VARIABLE or CREATE Push the start address of the parameter 

field onto the stack. (Parameter field 

address.) 

CONSTANT Fetch the contents of the first cell in 

the parameter field, and push onto the 

stack. 

. Execute the words of the colon definition 

by the addresses stored in the parameter 

field. 

The run-time code described above is normally defined in machine-code for speed, 

but we can devise our own run-time code in words defined by {CREATE} using 

{D0ES>}, as shown earlier this chapter. 

The final field in the dictionary entry, the parameter field, can contain almost 

anything. In the case of: 

CREATE null ok 

the parameter field is empty and of zero length (but the parameter field address will 

still be returned by {null}). In dictionary entries generated by {VARIABLE} or 

{CONSTANT} the parameter field consists of one 16 bit cell, containing the value of the 

variable, or constant. The parameter field may be extended in any of the above 

three cases by using {allot} {,} or {c,}. 

In a colon definition, the parameter field contains a list of code field addresses, one 

for each word in the body of the colon definition. To illustrate this figure 9.3 details 

the dictionary entries generated by the following: 

-Many FORTH systems limit the name field to 4 bytes, which means that 
although names mav be longer, the first three characters of equal length names 
must be unique to avoid ambiguity. Check your system documentation for more 
details on this. 
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VARIABLE X 

: XSQ X @ DUP * X ! ; ( Square X ) 

memory addresses 

(hex ) 1000 

1004 

1008 

100E 

1010 

1012 

101 c 

previous parameter field 

, 1 X 

Li nk 

(variable ) code pointer 

space for variable 

3 X 

S Q 

link 1000 

(colon ) code pointer 

address of X = 1004 

address of @ 

address ol DUP 

address ol * 

address ol X = 1004 

address of EXIT 

free space 

(pointed to by HERE ) 

( to previous entry ) 

Figure 9.3 Two Dictionary entries illustrated 

The action of the colon run-time code (which is often referred to as the 'address 
interpreter'), is to fetch and jump to each address in the parameter field in turn. As 
an example, when FORTH executes (XSQ} it jumps to the address interpreter 
pointed to by the code field (address 100E). The address interpreter then: 

i. Fetches the first address in the parameter field, which is the code field 
address of (x>. 

ii. Pushes the address of the next cell in the parameter field (1012) onto the 
return stack. 

iii. Jumps to tx>. 

When the run-time code for the variable (x> has finished, the address interpreter 
pops the value 1012 off the return stack, to fetch the next code field address, for the 
word (a>, and the above three steps are repeated. 

The final entry in the parameter field of CXSQ} was generated by the terminating 
semi-colon and is the word {exit}, {exit} has the effect when executed of returning 
us to the next higher level of execution (by popping an address off the top of the 
return stack and passing it to the address interpreter). This means that if we have 
included {XSQ} in another colon definition, for example: 

: TEST XSQ X a ; 
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when <test> executes, {XSQ} will be executed with the address of the next word in 

{test}, which is {X}, on the return stack. When the final {exit} of {xsfi} is executed, 

the address interpreter will return correctly to the next word in {test}. It is this use 

of the return stack that enables us to 'nest' colon definitions in this way. 

We can use the word {exit} inside colon definitions (but not DO loops!) in order to 

prematurely return to the next higher level of definition, but this breaks the 

structured nature of FORTH and its use is not recommended. 

A question you may well be asking now is "What happens if I have typed {XSQ} 

directly so that as soon as it has finished, control is returned to the keyboard and 

'ok' printed - how does {exit} achieve this?". The answer may come as a surprise, 

but a FORTH system is always executing a colon definition even while waiting for 

typed input! {EXIT} returns us back into this outer program which looks, in outline, 

like this: 

: QUIT BEGIN 
( Clear the return stack ) 

( Fetch a line of input using QUERY ) 

( Execute the input using EXECUTE ) 

ok" CR 

0 UNTIL ; ( Loop forever ) 

(This is virtually the same {quit} that we met in chapter 5.8!) 

9.6 Defining new Compiling words 
Armed with an understanding of the FORTH dictionary structure we can now go 

on to define new 'compiling words', but first let us review some compiler and 

dictionary handling words. 

The two words {find} and {1} (pronounced "tick") both return information about a 

particular dictionary entry. FIND <name> will return, on the stack, the code field 

address of the dictionary entry for <name> (or zero if the word is not found in the 

dictionary). Thus typing: 

FIND TEST . 12345 ok ( print code field address of TEST ) 

will tell us if {TEST} is in the dictionary. The word {EXECUTE} will execute the word 

whose code field address is on the stack, so that: 

FIND TEST EXECUTE 

is exactly the same as typing simply: 

TEST 

A rather more useful application of {EXECUTE} is to execute 'indirectly' that is, using 

a code field address stored in a table. We shall see an example later in this section. 

{' <name>} will return the parameter field address of the dictionary entry for 

<name> if it exists. Thus: 

10 CONSTANT A 

1 1 A ! 

enables us to change the value of a constant. 

If {'} is used inside a colon definition it has the unusual effect of using the very next 

word in the definition as the <name>, not the next word in the input stream. For 
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example: 

: TESTPFA ' TEST ; ok 
TESTPFA . 12347 ok ( parameter field address of TEST ) 

The 'precedence bit', mentioned in figure 9.2 of the last section, has the effect of 
determining whether a word is compiled or executed when it occurs within a colon 
definition. Words that have the precedence bit set are called 'immediate' words, 
and are executed while the colon definition containing them is being compiled. The 
word {immediate} sets the precedence bit of the most recently defined word. For 
example in: 

: PRINTNOW CR Compiling.." CR ; IMMEDIATE ok 

the word {printnow} will always be executed, and will not generate any compiled 
coder 

: TEST PRINTNOW CR Running.." CR ; 

CompiLing.. 
ok 
TEST 

Running.. 

ok 

One of the effects of the defining word {:} is to switch FORTH into 'compile' mode, 
and the terminating {;} switches FORTH back into 'execute' mode. The system 
variable {state} tells us which of these two modes FORTH is in at any particular 
time, for example: 

: MODE? STATE 3 IF ." Compiling " ELSE Executing " THEN ; ok 
IMMEDIATE ok 

MODE? Executing ok ( Execution mode ) 

: TEST A + MODE? ; CompiLing ok ( Compile mode ) 

The word {mode?}, being immediate, will not generate any compiled code. 

The two words {{} "left-bracket" and {]} "right-bracket" have the effect of 
switching FORTH into 'execute' or into 'compile' mode respectively. Thus in: 

: TEST ." Print later " C ." Print now " 3 ; Print nou ok 
TEST Print Later ok 

The FORTH enclosed by the square brackets is executed during the compilation of 
{TEST}, and generates no compiled code. A rather more useful application is to do 
'compile time' arithmetic. For example in: 

1024 CONSTANT IK ok 
: ADD.5K C IK 5 * 3 LITERAL + ; ok 

The definition of {add_5K} is identical to: 

: ADD.5K 5120 + ; ok 

but much more readable. The word {literal} has the effect of compiling the 
number on top of the stack (in FORTH terminology compiled numbers are called 
'literals'). Thus: 

: TEN C 10 3 LITERAL ; ok 

and: 

: TEN 10 ; ok 
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are identical, and produce the same compiled code.3 
An interesting application of right-bracket is to generate a table of code field 
addresses. The word {execute} may then be used to execute one of the words 
pointed to by the table, as follows: 

: ZERO zero " ; ok < Some example words ) 

: ONE one " ; ok 
: TWO two " ; ok 

CREATE VECTORS ] ZERO ONE TWO L ok ( create vector table ) 

: GOVECTOR 2 * VECTORS + S EXECUTE ; ok 

0 GOVECTOR zero ok 
2 GOVECTOR two ok 

The word {compile} may be used to define new words which have both a run-time 
and a compile-time action. The structure of the definition of such a compiling 

word' is as follows: 

: run_time_action 

: compiling_word COMPILE run_time_action 

.. compile time words .. ; IMMEDIATE 

Since the new compiling word is an immediate it will be executed when it occurs 
within a colon definition. The word {compile} will compile the code field address 
for {run_t ime_acti on}, and the compile time words will be executed right away. 

The word {literal} is an example of a compiling word, and could be defined as 

follows: 

(LITERAL) R> ( addr 

DUP ( dup l 

2+ >R ( poi n 

a ; ( get 

ess of number ) 

icate it ) 

t to next cell in code field ) 

number to stack ) 

: LITERAL COMPILE (LITERAL) 

, ( store number in dictionary ) 

; IMMEDIATE 

At compile-time the number on top of the stack is stored in the next cell in the 
dictionary by {,}. When the run-time code {(LITERAL)} is executed, at run-time, the 
value on top of the return stack will point to the next cell in the code field, which 
contains the number. {(LITERAL)} fetches the number onto the stack, and adds two 
to the address on top of the return stack so that the address interpreter will skip 
over the cell containing the number. 

The looping and conditional structures are also examples of compiling words which 
modify the address on top of the return stack, at run-time, on order to force the 
address interpreter to continue from elsewhere in the program. To illustrate this, 
here is a definition for a new looping structure STEP .. DOWN: 
At compile-time {STEP} pushes the current dictionary address supplied by {HERE} 

onto the stack, and the corresponding {DOWN} compiles this address into the code 
field using {,}■ The run-time code {(down)} places this branch address on the return 

'^Literals actually generate two entries in the parameter field. The first points to 
the run-time code for literals, and the second cell contains the number. The 
run-time code will have the effect, when executed, of fetching the number and 
pushing it onto the stack. 
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: STEP COMPILE >R 

HERE ; IMMEDIATE 

( Loop counter to return stack ) 

( place HERE on return stack ) 

: (DOWN) R> ( fetch return address ) 

( and Loop counter ) R> 

1- DUP IF ( decrement Loop counter ) 

( save new vaLue ) 

( and branch address ) 

>R 

a >R 

ELSE 

DROP 

2 + >R 

( end of Loop ) 

( drop Loop counter ) 

( and skip over branch address ) 

THEN ; 

: DOWN COMPILE (DOWN) 

, ; IMMEDIATE 

( compiLe run-time code ) 

( save HERE from STEP in dictionary ) 

stack (a >R> when the loop should be repeated, or skips over it C2+ >R> at the end of 
the loop. The loop counter is held on the return stack and copied off the normal 
stack by {STEP} at run-time using {>R>. For example: 

: TEST 10 STEP I . DOWN ; ok 
TEST 10987654321 ok 

Finally, the word {[compile]} should be mentioned. This is used to override the 
precedence bit in immediate words, so that they may be included in colon 
definitions and executed at run-time, not compile-time. As as example, suppose we 
need to "tick" the next word in the input stream. Using [COMPILE] we could write: 

: .PFA [COMPILE] ' . ; ok ( print parameter field addr ) 

.PFA TEST 12347 ok 

9.7 Summary 
The following new words have been introduced in this chapter: 

Defining words: 

D0ES> ( —> ) "does" 

Defines the start of the run-time action of a new defining word. Used in the 
form: 

: defining-word ... CREATE ... D0ES> ... ; 

And then: 
defining-word <name> 

When <name> is executed the words between DOES> and ; are executed 
with the parameter field address of <name> on the stack. 

Dictionary words: 

-* addr) "tick" 

When used in the form ' <name> leaves the parameter field address of the 
dictionary entry for <name> on the stack. If used in a colon definition the 
address is compiled into the dictionary as a literal. Error if <name> is not 
found in the dictionary. 

FIND -* addr) 
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Return the code field address of the next word in the input stream, or zero if 
the word is not found in the dictionary. 

Compiler words: 

IMMEDIATE ( -» > 

Mark the most recently defined dictionary entry as a word that will be 
executed even when it occurs within a colon definition. 

LITERAL (n -> ) 

If compiling compile n into the dictionary as a 16 bit literal, which will leave n 
on the stack when later executed. 

STATE ( -> add r) 

System variable indicating the current state of the system. A non-zero value 
indicates compilation is occurring. 

[ ( -> ) "Left-bracket" 

End compilation so that subsequent text is executed. 

3 ( _> ) "right-bracket" 

Set compilation mode so that subsequent text is compiled. 

compile < -> ) 

When a word containing COMPILE executes the code field address following 
COMPILE is copied (compiled) into the dictionary. 

[COMPILE! ( —> ) “bracket—compiLe" 

When used in the form [COMPILE] <name> the word <name> is compiled 
even if it is an immediate. 

EXECUTE (n -» ) 

Execute the word whose code field address is on the stack. 

exit ( -> ) 

When included within a colon-definition EXIT has the same effect as -C; >. May 
not be used within a DO loop. 
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10 
FORTH Finale 

In this concluding chapter I will put some of the 
techniques described so far into practice in two complete FORTH programs. I shall 
outline each program from initial conception, through development and debug¬ 
ging, to finished Vocabulary7. The first is the calendar vocabulary mentioned in the 
introduction, and the second is an interactive 'video game'. These are chosen both 
because they are interesting programs in their own right, and because they each 
illustrate a particular type of programming problem; the calendar program is largely 
mathematical, and the video game relies heavily on high speed graphics. Neither 
program requires disk handling and will run equally well on a cassette based 

system. 

10.1 A Calendar Vocabulary 
A useful set of 'calendar' words were first proposed in the introduction to this 

book. They are: 

day (day month year -> ) Print the day of the week 

that the specified date falls 

upon. 

month (month year -» ) Print a calendar for the 

month specified. 

year (year -» ) Print a whole year calendar. 

days let t (day month year -> ) Print the number of days 

remaining until the current 

year end. 

Having specified the end result we must now develop a strategy for arriving at this 
result, in other words, a logical set of sub-definitions which will ultimately build the 
final definitions as specified here. The key operation at the heart of a calendar 
program in any language is usually to calculate the weekday of January the first, for 
any year. Fortunately there is a well known method, called Zeller's congruence, for 
calculating this, which we can easily use to define a wprd {janlst}. Logically the 
next operation needed will be to calculate how many days into the year any given 
day and month is, which we can call {daynumber}. The combination of {janlst} and 
{daynumber} should then allow us to define the first word in our calendar 
vocabulary fairly easily... 

10.1.1 Zeller's Congruence 
Blocks 100 and 101 (See section 10.1.4 for full listings). 

The following rather complicated formula will calculate the day of the week of the 
first day in any year, as a number from 0-6 (Sunday to Saturday respectively), and is 
good for any year from 1582 to 4902 inclusive! In addition it automatically takes care 
of leap years. The formula is expressed as it would be written in floating point 
BASIC, with the year in the variable Y, and the resulting day in D. 

A = INT((Y—1)/100) 

B = Y— 1—10 0 * A 
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D = 799+B+INT<B/4)+INT(A/4)—2*A 

D = D HOD 7 

Translating this directly into FORTH, with the same variable names, gives the 
following definition: 

VARIABLE Y ( year ) 

VARIABLE a ( temporary variables ) 

VARIABLE b 

: janlst Y S 1 - 100 / a ! 

Y 3 1 - 100 a 3 * - b ! 

799 b ! * b a i / t a a 4 / * I a a * - 

7 MOD ; 

The calculation is simplified slightly by .the fact that FORTH division is 
automatically integer division, {janlst} could, of course, be written without the 
temporary variables a and b, and instead use the stack to retain these intermediate 
values until they are needed. Most FORTH programmers would, however, feel that 
the extra complexity (in writing and debugging) is not warranted - especially since 
{janlst} is not a time critical operation, and will probably only need to be 
calculated once for every calendar operation. 

Entering this into a new disk block (or the equivalent on a cassette based FORTH 
system), and LOADing the block will enable us to test {janlst}, as follows: 

1982 Y ! ok 
janlst . 5 ok 

Where the result 5 indicates 'Friday' - and a glance at a 1982 calendar will confirm 
that January the 1st 1982 was indeed a Friday. Now check that {janlst} hasn't left 
any unwanted values on the stack: 

. 0 STACK EHPTY 

A useful check to apply to any new definition. 

At this stage we realise that before long a word which prints out the day of the 
week as "Sunday", "Monday" etc. will be needed, and since such a word will 
enable us to test {janlst} very easily, we may as well define the word next: 

: "days" Sunday " Monday " Tuesday " Wednesday" 

Thursday " Friday " Saturday " ; 

: printday 12 * 1 "days" +3+9 TYPE ; 

The word {"days"} simply contains a list of equal length strings. Each string will 
take up exactly 12 bytes of the parameter field; the first two bytes contain the code 
pointer for {."}, the third is the count byte and the remaining 9 bytes contain the 
string itself, {printday} needs a number on top of the stack between 0 and 6, which 
is multiplied by 12 and added to the parameter field address returned by the phrase 
{' "days"}. Adding 3 to skip the code pointer and byte count leaves the address of 
the required string, ready for {9 type}. 

A simple 'diagnostic' definition will now enable us to test both {janlst} and 
{printday} rigorously: 

: teitl 1985 1980 DO 

I Y ! 

Jan 1st " I . SPACE 

janlst 
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- " printday CR 

LOOP ; 

Which should produce the result: 

Jan 1st 1980 - Tuesday 

Jan 1st 1981 - Thursday 

Jan 1st 1982 - Friday 

Jan 1st 1983 - Saturday 

Jan 1st 1984 - Sunday 

The technique of interspersing 'diagnostic' definitions with the major definitions 
under development is well worthwhile, and aids debugging considerably! 

10.1.2 Daynumber and day 
Blocks 102 and 103. 

The word {daynumber} must calculate the number of days in the year up to a given 
day and month, so that, for example the 2nd of February is the 33rd day in the year 
(31 days in January + 2). The best approach here is to first set up an array of 
constants representing the number of days in each month, using the technique 
described in chapter 3.5, and since only small values are involved a byte array is 
appropriate: 

CREATE dpmtable ( days per month ) 

31 C, 28 C, 31 C, 30 C, 31 C, 30 C, 

31 C, 31 C, 30 C, 31 C, 30 C, 31 C, 

: dpm dpmtable + C3 ; 

We can now write {daynumber} very easily: 

VARIABLE D ( day ) 

VARIABLE M ( month ) 

: daynumber 0 ( initial, value ) 

12 0 DO 

h a i = if 
D a + LEAVE 

ELSE 

I dpm + 

THEN 

LOOP ; 

{daynumber} will return, on the stack, the number of days up to the day and month 
given by the variables D and M respectively. It works by simply looping through 
the months from January (0) to December (11). When the month specified by the 
variable {M} is reached, then the day in {D} is added to the daynumber so far, and 
the loop exited using {leave}, else the number of days in the month returned from 
the table by {dpm} is added to the daynumber, and the loop repeats. 

The first of the required calendar vocabulary words may now be easily written as: 

: day Y ! M ! D ! 

janlst daynumber +1-7 MOD 

printday ; 

The day returned by {j a n 1 s t} for the specified year { Y }, is added to the daynumber, 
and 1 subtracted to make the total run from zero. The phrase {7 mod} leaves a value 
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from 0 to 6, representing the actual day of the week, which is printed by 
{printday!. For example: 

31 11 1981 day Thursday ok ( 31st december 1981 ) 

1 0 1982 day Friday ok ( 1st january 1982 ) 

The months run from 0 for january, through to 11 for december. 

Although Zeller's congruence allows for leap years, the words {dpm! and hence 
{daynumber! do not. Additionally, the definition for {day! does not check to see if 
the date specified actually did, or will, exist. These two necessary enhancements, 
together with constant definitions for month names, are straightforward, and are 
shown in the full block listings for the calendar vocabulary in section 10.1.4. 

10.1.3 Month, year and daysleft 
Blocks 104 and 105. 

The major complexity in the definition of {month! is that of printing layout, since 
essentially all that is required is to print the numbers from 1 up to the number of 
days in the month, in their correct 'day' columns, as follows: 

Sun Mon Tue Wed Thu Fri Sat 

1 2 

3 4 5 6 7 8 9 

etc.. 

We need to calculate the day of the week that the 1st of the month falls upon, then 
print spaces until under this 'day' column. Once there we count the days of the 
month, inserting newlines after each 'Sat' column has been filled. The easiest way 
of keeping track of where we are, in the current line, is with a 'character counter' 
variable, which is incremented whenever numbers, or spaces, are printed. 

A definition for {month! along these lines is as follows: 

Q VARIABLE chars 

1 : month Y ! M ! 10! 

2 SPACE ." Sun Mon Tue Wed Thu Fri Sat" 

3 janlst daynumber +1-7 MOD 

4 4 * DUP SPACES chars ! 

5 M S dpi It 1 DO 

6 14.R 4chars+! 

7 chars S 24 > IF CR 0 chars ! THEN 

8 LOOP ; 

The phrase in line 3 is identical to that used in {day! and has the effect of returning 
the weekday of the first of the month, since the day variable {D! has been set to 1 

(on line 1). Line 4 then uses this weekday to print spaces up to the required column, 
and saves the number of spaces printed in {chars!. Line 5 sets up the DO loop to 
count from 1 up to the number of days in the month {Ml! The phrase {I 4 . R!1 on 
line 6 prints each date right justified in its column, and {4 chars +!! increments the 
character counter, which is checked on line 7 to see if a {CR! is needed. 

‘If you don't have {.RJ a definition appears in chapter 8.4. 
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The version of (month} in block 104, in section 10.1.4, is slightly improved, with 
range checking using (datecheckJ, and a heading printed by (monthprint}. In 
addition (dpm> takes account of leap years - see block 102. A sample run of (month} 

is as follows: 

february 

february 

1982 month 

1982 

Sun Hon Tue Ued Thu Fri Sat 

1 2 3 4 5 6 

7 8 9 10 11 12 13 

14 15 16 17 18 19 20 

21 22 

28 

23 24 25 26 27 

ok 

The definition of (year} is now very straightforward, as shown in the block 104 
listing. 

The final word in the calendar vocabulary (daysLeft} poses only one slightly 
awkward problem, which is how to calculate the number of days until the year end 
(which, in the business world, can be any calendar date), if the next year end is in 
the following year. The problem is that of leap years (again!); the word (daynumber} 

as defined in block 103 copes with leap years, but to calculate the number of days 
left in the current year (till december 31st) we must subtract the daynumber from 
365 or 366 as appropriate. The definition of (days left} is shown in block 105 and is 
used as follows: 

1 june yearend ok ( initialise yearend ) 

1 march 1982 daysleft 92 ok 

2 june 1982 daysleft 364 ok 

10.1.4 The Calendar Vocabulary blocks listed 

100 LIST 

0 ( Calendar Vocabulary, Zeller's congruence ) 

1 DECIMAL 

2 FORTH DEFINITIONS 

3 VOCABULARY calendar 

4 calendar DEFINITIONS 

5 

6 VARIABLE Y VARIABLE M VARIABLE D ( Year, Month, Day ) 

7 

8 VARIABLE a VARIABLE b ( work variables for janlst ) 

9 : janlst ( return the day, 0-6, of jan 1st in year Y ) 

10 Y a 1 - 100 / a ! 

11 Y a 1 - 100 a a * - b ! 

12 799 b a + b 3 4 / + a a 4 / + 2 b a * - 

13 7 MOD ; ( _ n ) 

14 

15 101 LOAD 102 LOAD 103 LOAD 104 LOAD 105 LOAD 

101 LIST 

0 ( Calendar Vocabulary, string printing ) 
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1 : "days" ( weekday string tabLe ) 

2 Sunday " Monday 
II Tuesday " . " Wednesday" 

3 Thursday " Friday " Saturday " ; 

4 : ; printday ( print weekday 0-6 ) 

5 12 * 1 "days" + 3+9 TYPE ; ( n -> ) 

6 

7 : : "months" ( month string table ) 

8 January " February II ."March " . " Apri l " 

9 May " J une " ."July " August " 

10 September" October • 1 ." November " . " December " / 

11 : : printmonth ( print month 0-11 > 

12 12 * 1 "months" + 3 + 9 TYPE ; ( n -> ) 

13 

14 

15 

102 LIST 

( Calendar Vocabulary, date checking words ) 

CREATE dpmtable 

31 C, 28 C, 

31 C, 

31 C, 

30 C, 

30 C, 

31 C, 

leap? 

31 C, 

3 4 MOD 0= 

a 100 MOD 0= NOT AND 

( table of days per month ) 

31 C, 30 C, 

30 C, 31 C, 

( is year Y a leap year ) 

Y a 400 MOD 0= OR ; 

: dpm DUP dpmtable + Ca ( 
SWAP 1 = leap? AND 

IF 1+ THEN ; 

( Check date within range, all return 'true 

: Ycheck Y a DUP 1582 < SWAP 4902 > OR ; 

: Mcheck M 8 12 U< NOT ; 

: Dcheck D a 1 - M a dpm U< NOT ; 

: datecheck Ycheck Mcheck Dcheck OR OR 

IF Date error" ABORT THEN 

( -+> flag ) 

return no of days per month ) 

( add 1 if Feb and leap yr ) 

( nl -> n2 ) 

if NOT ) 

( -» flag ) 

( -> flag ) 

( -> flag ) 

103 LIST 

0 
1 
2 
3 

4 

5 

6 
7 

8 
9 

10 
11 
12 
13 

14 

15 

Calendar Vocabulary, daynumber and day ) 

1 C february 2 C march 

5 C june 6 C july 

9 C October 10 C november 

C january 

C may 

C September 

CONSTANT 

apri l 

august 

december 

daynumber 0 12 0 DO ( 
m a i 

calculate 

= IF 

D a + 
ELSE 

I dpm 

THEN 

days up to date D/M/Y 

( loop through months 

LEAVE ( unti l M=I 

LOOP ; 

calculate day of week of 

D/M/Y janlst daynumber + 

djy Y ! M ! D ! datecheck 

D/M/Y printday ; 

( accumulate days ) 

( -> n 

date D/M/Y, 0-6 ) 

1- 7 MOD ; ( -» n 

( print day of date given 

( d m y -* 

104 LIST 

0 ( Calendar Vocabulary, month and year ) 

1 VARIABLES chars < character counter ) 
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2 : month 

3 

4 

5 

6 
7 

8 
9 

10 
11 
12 : year 

13 

14 

15 

y ! M ! ID! datecheck ( print specified month ) 

CR H a printmonth SPACE Y i , ( heading ) 

CR SPACE Sun Hon Tue Wed Thu Fri Sat" CR 

D/m/Y ( calculate 1st day of month ) 

4 * DUP SPACES chars ! ( go to day column ) 

H a dpm 1+ 1 DO ( step thru days in month ) 

I 4 .R 4 chars +! 

chars a 24 > IF CR 0 chars ! THEN 

LOOP CR CR ; (my-.) 

( print whole year calendar ) 

12 0 DO ( loop thru months ) 

I OVER month 

LOOP DROP ; < y -* > 
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5 

6 
7 

8 
9 

10 
11 
12 
13 

14 

15 

( Calendar Vocabulary, yearend and daysleft ) 

VARIABLE Hend VARIABLE Dend ( current end of year ) 

: yearend l intialise end of year ) 

OVER OVER 1 = SWAP 29 = AND ( 29th of Feb? ) 

IF. You can't be serious!" ABORT THEN 

Hend ! Dend ! ; (dm-*) 

: daysinY ( How many days in year Y ) 

leap? IF 366 ELSE 365 THEN ; ( -> n ) 

: daysleft ( Number of days up to yearend ) 

Y ! H ! D ! datecheck daynumber 

Hend a H ! Dend a D ! datecheck daynumber 

OVER OVER > NOT IF ( specified date BEFORE yearend?) 

SWAP - . 

ELSE daysinY SWAP - 

1 Y +! datecheck daynumber + . 

THEN ; ( d m y -> ) 

10.2 A Video Game Vocabulary 
The game I have chosen to illustrate this vocabulary is 'Solo squash' (which is 
actually the player versus the machine!). The player controls a bat, which may be 
moved from left to right along the bottom line of the video display. The machine 
'serves' a ball, with a random direction and speed from the top line of the display 
moving downwards. If the bat intercepts the ball then it bounces back up the 
screen, and positive points are scored, otherwise points are lost and the machine 
serves a new ball. Whenever the ball hits the top or sides of the screen, or the 
middle of the bat, then it 'bounces' in a perfectly elastic fashion. If the player 
catches the ball with the side of the bat, then it deflects randomly. 

In order to 'structure' the vocabulary effectively it is helpful to plan the final word, 
{squash}, right at the start so that we can predict which intermediate words will 
need to be developed. The easiest way to set down the algorithm is with FORTH 
comment as follows: 

: squash 

( clear the screen and print the score ) 

( generate a new ball ) 

BEGIN 
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( plot the ball and bat ) 

( check keyboard and move the bat if necessary ) 

( move the ball, bouncing if necessary ) 

IF ( the ball is on the baseline ) 

IF ( and it hit the bat ) 

C deflect the ball upwards ) 

( increment the score ) 

ELSE ( the bat missed the ball ) 

C serve a new ball ) 

( decrement the score ) 

THEN 

( print the new score ) 

THEN 

0 UNTIL ; C and loop ) 

All we have to do now is write definitions to 'fill in' the comment! 

Because of its speed FORTH lends itself particularly well to programs of this type; 
in fact, FORTH games programs often have to be slowed down in order to make 
them possible for anyone with less than lightning reflexes! Another interesting 
point is that many 'arcade' video games are currently written in FORTH. 

10.2.1 The Ball handling routines 
Blocks 110 and 111 (See section 10.2.4 for full listings). 

At the heart of any video game is 'graphics' handling; the ability to directly alter the 
contents of the screen without the normal constraints of output one line at a time. 
Any computer system with a memory mapped display, in which a single 'pixel' 
may be directly addressed and altered can be used. Figure 10.1 illustrates the 
display screen as defined throughout this vocabulary. 

x -> 

1 
2 
3 

y ■ 

ymax ____ 

Figure 10.1 The videogame vocabulary display 

A 'pixel' is a single picture element, and may be a 'dot' in a high resolution system, 
or a 'block of dots' in a low resolution (chunky graphics) system. Providing that the 
video memory addressing starts at the top left hand corner, and runs contiguously 
toward high memory, finishing in the' bottom right corner, then we can define a 
word to plot a pixel in the position (x,y) as follows: 

HEX F000 CONSTANT vdust 

DECIMAL 64 CONSTANT width 

16 CONSTANT height 

: coord width * + vdust + ; 

: plot coord C! ; 

( start of video memory ) 

( width of screen ) 

( height of screen ) 

( x y -» addr ) 

( char x y -> ) 

This example defines {plot! for a 16 line by 64 character 'chunky' graphics system. 
If the graphics character has the code 192 (decimal), then it may be plotted at 
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position 5,5 by the phrase: 

192 5 5 plot 

In systems with a high resolution video display {plot} will probably be defined to 
light up the pixel addressed, and an additional word {unplot} will switch off the 
pixel, in which case the phrase {charxypletHn the videogame vocabulary will be 
replaced by {x y plot}, or if char is 32 ("space") by {x y unpLot}. Since there is no 
standard for high resolution video displays I have assumed, throughout the 
videogame vocabulary, a low resolution 'chunky graphics display. 

As the final video game will involve mostly ball handling (moving the ball, or 
finding out where it is), and these functions will be spread out over a number of 
colon definitions, it seems sensible to hold the current ball position coordinates in a 
pair of variables, {x} and {y}. In addition, {x} and {y} must never go outside the 
bounds 0 to xmax and 0 to ymax respectively, and so a definition {xyplot} which 

includes boundary checking will be useful: 

width 1- CONSTANT xmax C set up xmax and ymax ) 

height 1- CONSTANT ymax 
VARIABLE x VARIABLE y ( ball coordinates ) 

: xycheck x 3 0 MAX x ! ( force x to zero, if less ) 

x 3 xmax MIN x ! ( or to xmax if greater ) 

y a 0 MAX y ! ( force y to zero, if less ) 

y a ymax MIN y ! ; ( or to ymax if greater ) 

: xyplot xycheck x a y a plot ; ( char -* ) 

Whenever {x} or {y} fall outside their respective ranges {xycheck} will 'force' them 
onto a boundary. Notice the use of {MAX} and {MIN} to avoid complex IF structures. 

The ball is moved by the word {xystep}, which adds the values in the variables 
{xstep} and {ystep} to {x} and {y}. 'Bouncing' off a side is achieved simply by 
NEGATEing {xstep} or {ystep} as appropriate for the side that the ball has hit. The 
definitions {xleft}, {xright}, {ytop} and {ybottom} check to see if the ball has hit 
the left side, right side, top or bottom, and 'bounce' the ball if it has. The test 
definition {pattern} in block 111 will test these functions by drawing a line which 
bounces when it hits a side, as illustrated by figure 10.2. 

Type {n pattern} to plot n points. Altering the initial values of {x}, {y}, {xstep} and 
{ystep} will produce some very interesting patterns! 



10.2.2 Bat handling 
Block 112 

The word {plotbat} will draw a bat three pixels wide on the bottom line of the 
display, for example: 

32 bat ! 

163 plotbat 

will draw the bat, in our 16 line by 64 character example screen, with the chunky 
graphics character 163 at positions (31,15), (32,15) and (33,15). The bat is moved to 
the left by Cbat—1 > and to the right by {bat + 1}, which again will prevent the bat 
from going off the screen. 

The word {movbat} expects an ASCII code from the keyboard on top of the stack; if 
it is the code for "z" then the ball is moved to the left, if it is "/" then the ball is 
moved to the right, or if it is neither then the word {abort} halts execution. The 
word {putbat} brings together the bat handling words: 

32 CONSTANT "blank" 

163 CONSTANT "bat" 

: putbat 

7TERMINAL 

?DUP 

IF 

the 

the 

space char 

bat char ) 

key pressed? 

duplicate if 

"blank" plotbat ( 

movbat ( 

"bat" plotbat ( 

erase the old bat ) 

move it left or right 

and plot new bat ) 

THEN 

The word {’terminal} is, not a FORTH-79 standard word, but most systems do 
include it. {?terminal} checks to see if a key has been pressed and returns its ASCII 
code on the stack if so, or zero otherwise. The word {putbat} therefore has no effect 
if a key has not been pressed. 

On computer systems with a 'joystick' device, {movbat} and {putbat} could be 
re-defined to make use of this, resulting in a much more 'professional' game. 

The following 'test' definition is useful: 

testbat 

c l rs 

"bat" 

BEGIN 

0 UNTIL 

plotbat 

putbat 

clear screen 

plot bat ) 

move 

loop 

it? ) 

till ABORTed 

Typing {testbat} will clear the display and draw a bat, which may be moved with 
the "z" and "/" keys. Hitting any other key will ABORT the program, and return 
control to the keyboard, (note that any game program using {putbat} will have this 
ABORT facility built in). If your keyboard has a 'repeat'.key try holding it down 
while hitting "z" or "/". 

10.2.3 The Squash game 
Blocks 113 and 114 

The preliminary definitions in block 113 are mostly random 'ball' or 'bounce' 
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selection routines. They all rely upon the routine {random}, which is a standard 
pseudo random number generator: 

VARIABLE rnd 

1234 rnd ! ( initialise seed ) 

: random rnd 3 ( fetch seed ) 

1021 * 41 + ( 1021*seed + 41 ) 

DUP rnd ! ; ( save new seed ) 

Every time the word {random} is executed a new random number is placed on the 
stack, within the range -32768 to 32767, excluding 0. The sequence of random 
numbers repeats itself every 65535 numbers, but that should not be a problem here! 
Most of the time we only require a limited range of random numbers and the word 
{>rand} will achieve this: 

: >rand random U* SWAP DROP ; 

Writing {n >rand} will result in a random number in the range 0 to n-1. 

The word {newba 11} selects a value for {x} between 0 and 63, and sets {y} to zero, so 
that the new ball starts somewhere on the top line of the display. In addition 
{xstep} is set to 2,1,-2 or -2, and {ystep} to 1 or 2, to give the ball a random 
downward direction. 

{deflect} selects only values of {xstep} and {ystep} thus allowing the ball to be 
deflected randomly, in an upward direction, when it hits the bat. 

The remaining words in block 113 are preliminary definitions to simplify the final 
definition of {squash}. The words {hitmiddle} and {hitlr} return the flag 'true' if 
the ball hit the bat in the middle, or on the left or right sides, respectively, 
{printscore} updates the score display by printing a carriage return, but not a line 
feed, {13 emit}, to overwrite the last score printout. 

Now that we have all of the ingredients, a definition for {squash} is very 
straightforward and can be written by following the algorithm outlined in section 
10.2: 

: squash 

c Irs 

0 sccre ! printscore 

newba 11 

BEGIN 

"ball" xyplot 

"bat" plntbat 

ski ll 3 DO 

putbat 

LOOP 

"blank" xyplot 

xystep 

xright xleft ytop 

y 3 ymax > IF 

hitmiddle IF 
10 score 

yreverse 

ELSE 

hitlr IF 

( clear screen ) 

( zero score and print it ) 

( generate a new ball ) 

( plot ball ) 

( and bat ) 

( move the bat? ) 

( erase the ball ) 

( move it ) 

( bounce off top and sides ) 

( ball on baseline or below it? ) 

( hit the bat middle? ) 

+! ( +10 points ) 

( and bounce ) 

( hit left or right ) 

20 score +! ( +20 points ) 
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def led ( def Led ball ) 
ELSE ( bat has missed ball ) 

-5 score +! 

newba 11 

( -5 points .) 

( serve newba 11 ) 

THEN 

THEN 

printscore ( update score ) 

THEN 

0 UNTIL ; ( loop till ABORTed ) 

There is only one 'improvement' to the original algorithm, which is that {putbat} is 

inside a loop which repeats {skill} times. This has two effects, one is that it slows 

the game down to a manageable speed, the other is that for each ball position the 

keyboard is checked {ski 11} times for the "z" or "/" bat movement keys. With a 

skill value of 400 the game is quite easy, 300 is moderately difficult, and 200 

hairaising! The object is, therefore, to achieve a positive score with as low a {ski 11} 

rating as possible. 

10.2.4 The Videogame Vocabulary blocks listed 

110 LIST 

0 ( Video game vocabulary, basic plotting routines ) 

1 FORTH DEFINITIONS ( set up a new vocabulary ) 

2 VOCABULARY videogames videogames DEFINITIONS 

3 HEX F000 CONSTANT vdust ( system dependent constants ) 

4 DECIMAL 80 CONSTANT width 25 CONSTANT height 

5 : coord width * + vdust + ; ( x y -» addr ) 

6 : plot coord C! ; ( char x y -> ) 

7 width 1 - CONSTANT xmax height 1 - CONSTANT ymax 

8 VARIABLE x VARIABLE y ( x runs 0-xmax, y runs 0-ymax ) 

9 : xycheck x a 0 MAX x ! ( check ) 

10 x 3 xmax MIN x ! ( screen ) 

11 y 3 0 MAX y ! ( boundaries ) 

12 y 3 ymax MIN y ! ; 

13 ( plot char at position x,y with boundary checks ) 

14 : xyplot xycheck x a y a plot ; ( char — ) 

15 111 LOAD 112 LOAD 113 LOAD 114 LOAD ( load the rest ) 

111 LIST 

0 ( Videogame vocabulary, bouncing ball routines ) 

1 VARIABLE xstep VARIABLE ystep ( change in position ) 

2 : xystep xstep 3 x +! ystep a y +! ; ( change x and y ) 

3 : xreverse xstep 3 NEGATE xstep ! ; ( reverse direction of x) 

4 : yreverse ystep a NEGATE ystep ! ; ( and y ) 

5 : xleft x a 0< IF xreverse THEN ; ( check for edges ) 

6 : xright x a xmax > IF xreverse THEN ; ( and BOUNCE ) 

7 : ytop y a 0< IF yreverse THEN ; 

8 : ybottom y a ymax > IF yreverse THEN ; 

9 : clrs 12 EMIT ; ( clear screen ) 192 CONSTANT "ball" 

10 ( Test program, bounce around the screen ) 

11 0 x ! 0 y ! 1 xstep ! 1 ystep ! ( start in top left ) 

12 : pattern clrs 0 DO ( clear screen ) 

13 "ball" xyplot ( plot the ball ) 

14 xystep xleft xright ytop ybottom 



15 LOOP ; ( n -> ) 

112 LIST 

0 ( Videogame vocabulary, bat handling routines ) 

1 VARIABLE bat width 2 / bat ! ( bat position 

plotbat DUP bat a 1- ymax plot ( plot bat on 

DUP bat S ymax plot 

bat a 1+ ymax plot ; 

3 xmax 1- LITERAL 

a 
bat + 1 

bat-1 

movbat 

bat 

bat 

2 
3 

4 
5 

6 
7 

8 
9 

10 32 CONSTANT "blank 

11 : putbat 

12 

DUP 122 = IF 

DUP 47 = IF 

13 

< IF 1 bat +! 

1 > IF -1 bat 

DROP bat-1 ELSE ( "2" 

DROP bat+1 ELSE ( 

ABORT THEN THEN ; ( 

163 CONSTANT "bat" 

7TERMINAL ?DUP IF ( move bat if 

"blank" plotbat movbat 

THEN ; 

on baseline ) 

bottom line ) 

( char -> ) 

THEN ; 

+! THEN ; 

= bat left ) 

= bat right ) 

else abort ) 

keypressed ) 

"bat" plotbat 

14 ( Test bat handling ) 

15 : testbat clrs "bat" plotbat BEGIN putbat 0 UNTIL ; 

113 LIST 

0 ( Videogame vocabulary, squash pre limi maries ) 

1 VARIABLE rnd 1234 rnd ! ( random number seed ) 

2 : random rnd a 1021 * 41 + DUP rnd ! ; ( -► n ) 

3 : >rand random U* SWAP DROP / ( -> n ) 

4 ( set xstep to either -2, -1, 1 or 2 ) 

5 : rxstep 4 >rand 1- DUP 0> NOT IF 1- THEN xstep ! ; 

6 ( serve a random new ball ) 

7 : newba l L 64 >rand x ! 0 y ! ( set x and y ) 

8 2 >rand 1+ ystep ! rxstep ; ( ystep, xstep ) 

9 ( def lect the ball off the bat at random ) 

10 : def lect 2 >rand 2- ystep ! rxstep ; 

12 : hitmiddle bat a x a = ; ( -> flag ) 

13 : hi t Ir bat a 1- x a = bat a 1+ x a = OR ; ( -> flag ) 

14 VARIABLE skill 300 skill ! VARIABLE score 0 scire ! 

15 : printscore 13 EMIT Score - " score a 5 .R ; 

114 LIST 

( Videogame vocabulary, solo squash ) 

: squash 

clrs 0 score ! printscore 

newba 11 

BEGIN 

"ball" xyplot "bat" plotbat 

skill a 0 DO putbat LOOP 

"blank" xyplot 

y a ymax > IF 

hitmiddLe 

hi 11 r 

( initialise screen ) 

( set up a new ball ) 

( plot ball and bat ) 

( delay and move bat ) 

xystep xright xleft ytop ( move ) 

( has ball hit baseline ) 

IF 10 score +! yreverse ELSE 

IF 5 score +! deflect Ei.SE 

-5 score +! newball 

THEN THEN 

( put up new score ) 

0 UNTIL 

pri ntscore 

THEN 

( Loop till we breakout of putbat ) 
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Answers to problems in Chapters 1-5 

Chapter 1 

12 + 34- * 

10 100 9 / + 5 + 

23456 + *** 

(20+10)/(20—10) 

1+2+3+4 

2 0—(1 * 2) 

3. 

100 -200 ABS MAX 

empty 100 -200 200 200 

100 100 

overall stack effect: ( - 200) 

-10000 0 MIN NEGATE 

empty -10000 0 - 10000 10000 

-10000 

overall stack effect: ( - 10000) 

1 2 SWAP OVER 

empty 1 2 1 2 

1 2 1 

2 

overall stack effect: ( - 2 1 2) 

10 DUP DUP * * 

empty 10 10 10 100 1000 

10 10 10 

10 

overall stack effect: ( 
- 1000) 

10 20 30 40 3 PICK 

empty 10 20 30 40 3 20 

10 20 30 40 40 

10 20 30 30 

10 20 20 

10 10 

overall stack effect: ( —» 10 20 30 60) 

60 

30 

20 

10 
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4. 
A good way of duplicating the top two numbers on the stack is by using the two 
operations {OVER OVER}. For example: 

input: OVER OVER 

stack: 20 10 20 

10 20 10 

10 20 

10 

So to find the sum, difference, product and quotient of the same two numbers, the 
following sequence will work: 

10 20 ok 

OVER OVER + . JO Ok 

OVER OVER - . -10 ok 

OVER -OVER * . 200 ok 

OVER OVER / . 0 ok 

In case the final result seems odd, don't forget that in integer division 10/20 = 0 
remainder 10. 

Chapter 2 

1. 

10 CONSTANT ten 

ten 4 * 1 + CONSTANT fred 

VARIABLE XYZ -100 XYZ ! 

VARIABLE A XYZ 3 fred - A ! 

3. 
The first solution that comes to mind is: 

i x a + xaxa* + x! 

But a shorter way of squaring a variable is to use {dup>: 

x a dup * 

Additionally the original expression looks like: 

LET X = X + . 

therefore we can use the special operation {+!}: 

x a dup * 1 + x +! 

for a minimal solution? 

4. 

a x a DUP * * b x a * + c+ 

5. 
If your computer should have an output device 'memory mapped' into memory 
location 1000, say, then typing: 



1000 CONSTANT device ok 

will allow you to send output to the device by typing: 

1 device ! ok 

as if the 'device' were a variable. Caution — don't try this with the value '1000 , you 
might corrupt an important memory location. 

Chapter 3 

1. 

: triple 3 * ; 

If a faster solution is required (at the expense of dictionary space) try the following: 

: triple DUP DUP + + ; 

This is faster because 'addition' is much faster than 'multiplication'. 

2. 

: newpage 
12 EMIT ( print form feed ) 

Page - " ( page heading ) 

. CR ; ( and page number ) 

3. 

CREATE array —10 , 1 , 10 , 1000 , 

: array 2 * array + ; 

Notice that by using the same name for the array address calculating definition, as 
for the array itself, we effectively 'hide' the array so that it is only accessible through 
its address calculation routine. 

4. 

: doublearray 
0 array 3 2 * 0 array ! ( double element 0 ) 

1 array 3 2 * 1 array ! ( double element 1 ) 

2 array 3 2 * 2 array ! ( double element 2 ) 

3 array 3 2 * 3 array ! ( double element 3 ) ; 

With a DO loop (see Chapter 5) we can achieve the same with a more compact 
definition: 

: doublearray 

4 0 DO 

I array 3 2 * I array ! 

LOOP ; 

4. 

yord s tack effect 

DUP < n 1 n2 -> nl n2 n2) Dup licate top value 

* < n 1 n2 n2 —> nl n 3) n3: =n2*n2 

SWAP (n 1 n3 -> n3 nl) 

DUP < n 3 nl —> n3 nl nl) Dup licate again 

* < n 3 nl nl -> n3 n4) n4:=n1*n1 

+ Cn3 n4 —» n 5) n5: =n3 + n4 



Therefore the overall effect of {example} is to square each of the two values on the 
stack, and add the results: 

example (n1 n2 - n5) n5:=n1*n1 + n2*n2 

Chapter 4 

1. 

uord stack effect 

1 ( 1) 

2 (1 -> 1 2) 
> (1 2 -* 0) 1 is not greater than 2, so flag 

-4 ( -* -4) 

is set to 'false' 

0< (—4 -> 1) -4 is less than 0 so result is 'true' 

5 ( -* 5) 

0> (5 -> 1) 'true' 

NOT (1 ^ 0) 'false' 

2. 

: SIGN DUP 0> IF 

positive 

ELSE 

DUP 0= IF 

zero" 

ELSE 

negative" 

THEN 

THEN ; ( i number is preserved ) 

3. 

1101101 X0R 1010001 = 0111100 

1010 OR 101 = 1111 

uord stack effect 

4 ( -* 4) 

5 (-*45) 
= ( 4 5 -> 0) 4 does not equal 5 

2 (0 -» 0 2) 

3 (0 2 -> 0 2 3) 

< (0 2 3 -> 0 1) 2 is less than 3 

OR (01^1) result is 1 

4. 

a a 2 = B a 2 = AND NOT IF 4 A ! THEN 

5. 
{0=} will have exactly the same effect as {NOT} upon a flag value, but {NOT} will not 

have the same effect as {0 = } upon a number. 

6. 
The phrase {over over} in exl suggests that there should be two values on the stack 
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initially (see Chapter 1, question 4 above). 

word stack effect 

OVER (n 1 n2 -> nl n2 nl) 

OVER (nl n2 nl -> nl n2 nl n2) 

> (nl n2 nl n2 -> nl n2 flag) true if n1>n2 

IF (nl n2 flag -» nl n2> 

SWAP (nl n2 -> n2 nl) only SWAP if n1>n2 

THEN 

DROP (n2 nl -> n2) if nl>n2 

(nl n2 -> nl) if not 

Thus the overall effect is to leave the lesser of the two values on the stack - i.e. the 
same as {mint. 

The initial {dup> in ex2 requires one stack value. 

uord stack effect 

DUP (n -> n n) 

IF (n n -> n) 

DUP (n -> n n) duplicate only if non-zero 

THEN 

Thus the overall stack effect is to duplicate the number on top of the stack only if it 
is non-zero - i.e. the same as {?dup>. 

Chapter 5 

1. 

: stars 

CR 

DUP 0 DO 

DUP 0 DO 

LOOP 

CR 

LOOP ; 

( initial newline ) 

( set up outer loop ) 

( and inner loop with same Limit ) 

( print a star ) 

( newline ) 

: sumalL 

0 
SWAP 1+ 

ROT 

DO 

I + 

LOOP ; 

( accumulator to zero ) 

( add 1 to limit ) 

( index to top of stack ) 

( add up numbers ) 

( Leave sum on stack ) 

3. 

: delay 1000 0 DO LOOP ; 

: countdown 

0 SWAP 

DO 

I . 

delay 

-1 +L00P 

." We have liftoff!! 

(delay approx 1 second ) 

( swap index and limit values ) 

( print countdown ) 

( and delay ) 

121 



4. 

exl 0 3 6 9 12 15 ok 

ex2 10 9 8 7 6 5 A 3 2 1 0 ok 

ex3 5 10 15 20 25 ... 95 100 ok 

5. 
Decide initially on the input of parameters, i.e. 

0 20 3 divisible 

to print all numbers between 0 and 20 inclusive which are exactly divisible by 3. 

: divisible 
ROT ROT 

SWAP 1+ SWAP 

00 

0UP 

I 

SWAP MOD 

0= IF 

I . 

THEN 

LOOP DROP ; 

( get index and limit to top of stack ) 

( add 1 to limit ) 

( and loop ) 

( duplicate divisor ) 

( number to test ) 

( divide for remainder ) 

( remainder = 0? ) 

(number is divisible if so ) 

( clear stack ) 

0 20 3 divisible 3 6 9 12 75 18 ok 

6. 

: DUMP 

BEGIN 

CR 

8 0 DO ( loop through 8 lines ) 

DUP 6 .R SPACE ( print address ) 

8 0 DO 

DUP CS 3 .R SPACE 1+ ( print bytes ) 

LOOP 

CR 

LOOP 

KEY 32 - ( get a keypress ) 

UNTIL ( loop if space ) 

DROP ; ( e l se exit ) 

(See Chapter 8.4 for a definition of -C. R>.) 
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Glossary of FORTH terminology 
The intention of this glossary is to explain any terminology used, but not 
necessarily explained, in the main text of the book. 

Address 
A 16 bit value which represents the address of a byte in memory. 

ASCII 

'American Standard Code for Information Interchange' - the code used by the 
majority of computers for representing characters as byte values. The following 
table lists each character together with its byte value in decimal, and hexadecimal. 

Char Dec Hex Char Dec Hex Char Dec Hex Char ■ Dec Hex 
NUL 0 00 SPACE 32 20 @ 64 40 i 96 60 
SOH 1 01 | 33 21 A 65 41 a 97 61 
STX 2 02 " 34 22 B 66 42 b 98 62 
ETX 3 03 # 35 23 C 67 43 c 99 63 
EOT 4 04 $ 36 24 D 68 44 d 100 64 
ENQ 5 05 X 37 25 E 69 45 e 101 65 
ACK 6 06 8 38 26 F 70 46 f 102 66 
BEL 7 07 1 39 27 G 71 47 g 103 67 
BS 8 08 ( 40 28 H 72 48 h 104 68 
HT 9 09 ) 41 29 I 73 49 i 105 69 
LF 10 0A * 42 2A J 74 4A j 106 6A 
VT 11 06 + 43 2B K 75 4B k 107 6B 
FF 12 OC / 44 2 C L 76 4C l 108 6C 
CR 13 0D - 45 2D M 77 4D m 109 6D 
SO 14 0E 46 2E N 78 4E n 110 6E 
SI 15 OF / 47 2 F 0 79 4 F 0 111 6 F 
DLE 16 10 0 48 30 P 80 50 P 112 70 
0C1 17 11 1 49 31 Q 81 51 P 113 71 
DC2 18 12 2 50 32 R 82 52 r 114 72 
DC3 19 13 3 51 33 S 83 53 s 115 73 
DC4 20 14 4 52 34 T 84 54 t 116 74 
NAK 21 15 5 53 35 U 85 55 u 117 75 
SYN 22 16 6 54 36 V 86 56 V 118 76 
ETB 23 17 7 55 37 W 87 57 w 119 77 
CAN 24 18 8 56 38 X 88 58 X 120 78 
EH 25 19 9 57 39 Y 89 59 y 121 79 
SUB 26 1 A 58 3A Z 90 5A z 122 7A 
ESC 27 IB / 59 3B [ 91 5B > 123 7B 
FS 28 1C < 60 3 C \ 92 5C 1 124 7C 
GS 29 ID = 61 3D 1 93 5 D { 125 7D 
RS 30 IE > 62 3 E t 94 5 E 

~ 
126 7E 

US 31 IF 7 63 3 F _ 95 5 F DEL 127 7 F 

All characters in the left hand column (and DEL) are 'control characters'. Very few 
computers implement all of these, but the common ones are: 

BEL = ring the 1 be U1 

BS = ’backspace’ one character 

HT = ’horizontal tab’ - move to the start of the next column 
LF = ’line feed’ 

FF = ’form feed’ - clear the screen and start a new page 

CR = ’carriage return’ - move to the start of the line 
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Assembler 
Assembler is the basic machine language of the microprocessor at the heart of any 

microcomputer system. Assembler is normally expressed symbolically using a set 

of mnemonic instructions specified by the manufacturer of the microprocessor, 

thus, for example, 8080 assembler is quite different to 6502 assembler even though 

microcomputers using these devices might run the same dialect of BASIC or 

FORTH. Advanced FORTH systems allow symbolic assembler to be embedded into 

FORTH applications using an ASSEMBLER vocabulary - specially written for the 

microprocessor running the FORTH system. Definitions incorporating assembler 

are known as CODE definitions and have a structure similar to a Colon Definition. 

For example, a CODE definition of a word to double the number on the stack might 

be written for an 8080-based machine as follows: 

CODE DOUBLE 

POPHL CALL, 

H DAD, 

PUSHHL JMP, 

END-CODE 

( new definition called DOUBLE ) 

( fetch top of stack to HL ) 

( add HL to itself ) 

( and push back result ) 

Notice that the 8080 assembler instructions are written operand first, mnemonic 

second. Code definitions are used to speed up time critical parts of a program, but 

suffer the disadvantage that they require the programmer to understand the 

assembly language of his microprocessor and the resulting FORTH applications 

may not run on other systems. 

Binary 
Base two. 

Boolean 
A numerical value representing one of the two logical states 'true' or 'false'. Also 

known as a 'flag'. In FORTH any 16 bit number may be treated as a Boolean, in 

which case non-zero values are 'true', zero is 'false'. 

Byte 
An 8 bit value. FORTH normally handles 16 bit numbers on the stack, thus byte 

values are represented as 16 bit numbers with the top 8 bits set to zero. 

Character 
A 7 bit value which represents a character in the ASCII standard. When contained 

in a larger number the upper bit(s) are set to zero. 

Compiling word 
A word which, when included inside a colon definition, has both a compile-time 

action and a run-time action. Examples of compiling words are {IF> {else} {then} 

{DO} {LOOP} {+ LOOP} {BEGIN} {UNTIL} {WHILE} and {LITERAL}. 

Data stack 
Same as 'Normal stack'. 

Defining word 
A word that, when executed, creates a new dictionary entry. The next word in the 

input stream is taken as the name of the new dictionary entry. Examples of defining 

words are {;} {create} {variable} {constant} and {vocabulary}. 

Dictionary 
The structure which contains all word definitions including both 'system' 
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(predefined) words and user defined words, in compiled form in memory. 

Individual dictionary entries are named and are referenced by name. 

Fixed-point number 
The technique which is usually adopted by the FORTH programmer for 

representing decimal or 'real' numbers by asuming a fixed position decimal point. 

For example, if the decimal point is fixed two places to the left then a 1 on the stack 

represents the fixed-point number 0.01, or 1234 represents 12.34. 

Flag 
Same as Boolean. 

Hexadecimal 
Base sixteen, using the digits 0 to 9 and A, B, C, D, E, F. 

Immediate 
A word which will execute rather than compile, during the compilation of a colon 

definition. Immediate words are {'} 1(1 {."1 1;) 1ooes>1 {forth} {Cl and 

{{COMPILE]} together with all compiling words. 

Infix 
The term used by computer scientists to describe the normal convention for writing 

arithmetic expressions in which the operators are fixed in between the numbers. 

For example 5 multiplied by 10 is written 5 * 10. 

Input stream 
The sequence of characters currently being interpreted. These may come from 

either the keyboard (through the terminal input buffer) or from disk or cassette 

(through a block buffer). The values of {>IN1 and {BUG determine which of these is 

the current input stream. 

Integer 
The term used by computer scientists to refer to a 'whole' number (i.e. -1, 27, -342), 

as distinct from a decimal or 'real' number (i.e. 33.42, -0.047). 

Literal 
In FORTH terminology a 'literal' is a number appearing inside a colon definition 

which represents only the number itself (that is the number has not been defined as 

the name of a high level definition). 

Normal stack 
Also known as 'data stack', 'parameter stack' or simply 'stack'. A last-in, first-out 

buffer to contain 16 bit values. This stack is used for arithmetic and general 

purposes; most FORTH operations pop input values off the stack, and push results 

back onto the stack. Stack values may represent any number type, see 'Number'. 

Number 
FORTH has operations to manipulate the following number 'types': 

type range 

Bi t 0 

Character (char) 0 

Byte (byte) 0 

Number (n) _ 

Unsigned number (un) 0 

Double number (d) - 

or 1 

... 127 

... 255 

32,786 ... 32,767 

... 65,535 

2,147,483,648 ... 2,147,483,647 
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Unsigned double number (ud) 0 ... 4,294,967,295 

(The abbreviation in brackets is that used in the shorthand stack notation used 
throughout this book). 

Double numbers are represented on the stack as two 16 bit values, with the upper 

16 bit half above the lower 16 bit half. All other number types are represented on 

the stack as a single 16 bit value with high order bits set to zero when representing 
character or byte. 

Parameter stack 
Same as 'Normal stack'. 

Pop 
The operation of retrieving a number from the top of the stack. 

Postfix 

The same as 'Reverse Polish Notation', in which arithmetic expressions are written 

with the operators after the numbers on which they operate. For example 5 

multiplied by 10 is written as 5 10 *. Postfix expressions may be directly evaluated 

using a stack, and all FORTH arithmetic must be written using postfix notation. 

Push 
The operation of saving a number on a stack. 

RAM 
Random Access Memory. Semiconductor memory which may be both read from 

and written into (changed), as distinct from ROM (Read Only Memory) which 

cannot be written into by a program. FORTH systems normally run in RAM. 

Return stack 
A stack reserved primarily for holding the 'return addresses' of words currently 
being executed. 

Reverse Polish Notation 
Same as 'Postfix' notation. 

Stack 
A special buffer for storing numbers such that the last number to be stored 

(pushed) will be retrieved (popped) first. FORTH maintains two stacks, the 'normal 
stack' and the 'return stack'. 

String 
The term given to a list of byte values in memory which represent, in ASCII, a 
number of characters of text. 

Two's complement arithmetic 
FORTH represents signed single length and double length numbers using two's 

complement notation. Thus the topmost bit indicates the sign of the number; 0 

means positive and 1 means negative. Taking single length (16 bit) numbers as 
examples, 

0000000000000000 

is, expressed in binary, the smallest positive number (decimal 0), and 

0111111111111111 

is the largest positive number (decimal 32,767). Whereas 
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1000000000000000 

is the lowest negative number (decimal -32,768), and 

1111111111111111 

represents the decimal value -1. 

To calculate the binary value of a negative number in two's complement notation 

take its magnitude (absolute value) in binary, invert each bit, and finally add one. 

For example, 

decimal + 2 = 0000000000000010 

inverted = 1111111111111101 

add one = 1111111111111110 

which is the two's complement representation of decimal -2, in binary. 

The same procedure is used to convert a negative binary number into its decimal 

equivalent, for example, 

in binary, 1111111111111000 

inverted = 0000000000000111 

add one = 0000000000001000 = decimal +8 

and so the original binary number represented the decimal value -8. 

Two's complement arithmetic is useful because it allows us to subtract by adding. 

For example, to subtract decimal 8 from decimal 2, add the two s complement 

representations of -8 and +2, 

decimal +2 = 0000000000000010 

decimal -8 = 1111111111111000 

sum = 1111111111111010 

which represents the correct result decimal -6. Notice that the sign of the result is 

automatically correct. 

Vocabulary 
A named subset of the dictionary. A number of different vocabularies may co-exist 

in the dictionary, all linked into the primary FORTH vocabulary. 

Word 
In FORTH terminology a WORD is any sequence of characters in the input stream 

delimited by 'space' characters on either side. This is different to the normal 

computer terminology of 'word=16 bit binary number'. In FORTH a 16 bit quantity 

is always referred to as a NUMBER, ADDRESS or sometimes a CELL. 
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INDEX 

This index lists the complete FORTH-79 standard word set, together with the 

recommended pronunciation where it is not obvious, and the number of the page 

containing the full formal description of the word. An informal description, with 

examples, will in most cases be found in the preceding chapter. 

! "store" 17 
# “sharp" 85 
#> “sharp-greater" 85 
#S “sharp-s" 85 
' "tick” 100 
( “paren" 29 
* “times" 9 
*/ "times-divide" 84 
*/mod "times-divide-mod" 84 
+ “plus" 9 
+ ! "plus-store" 18 
+ LOOP “plus loop" 49 
, "comma" 29 
- "minus" 9 
-trailing “dash-trailing" 73 
. "dot" 10 

"dot-quote" 29 
/ “divide” 9 
/mod "divide-mod" 9 
0= “zero-equals" 37 
0> “zero-greater" 37 
1+ “one-plus" 28 
1- "one-minus" 28 
2+ “two-plus" 28 
2- "two-minus" 28 
79-STANDARD 85 
: “colon” 29 
; “semi-colon" 29 
< “less-than” 37 
<# "less-sharp" 85 
- “equals" 37 
> “greater-than" 37 
>in "to-in" 74 
>R “to-r” 84 
? "question-mark" 18 
?DUP "query-dup" 37 
a “fetch" 17 
ABORT 50 
abs "absolute" 9 
ALLOT 29 
AND 38 
BASE 73 
BEGIN 49 
blk “b-l-k" 63 
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BLOCK 

BUFFER 

C! "c-store" 
ca "c-fetch" 
cmove “c-move" 
COMPILE 

CONSTANT 

CONTEXT 

CONVERT 

COUNT 

CR "c-r" 
CREATE 

CURRENT 

D+ "d-plus" 
o< "d-less-than" 
DECIMAL 

DEFINITIONS 

DEPTH 

dnegate "d-negate" 
DO 

does> "does" 
DROP 

dup "dupe" 
ELSE 

EMIT 

EMPTY-BUFFERS 

EXECUTE 

EXIT 

EXPECT 

FILL 

FIND 

FORGET 

FORTH 

HERE 

HOLD 

I 

IF 

IMMEDIATE 

J 

KEY 

LEAVE 

LIST 

LITERAL 

LOAD 

LOOP 

max "max" 
MIN "min" 
mod "mod" 
MOVE 

NEGATE 

62 
63 
18 
18 

74 
101 

18 
64 
73 
73 
10 
29 
64 
84 
84 
73 
64 
28 
84 
49 
99 

8 
8 

38 
72 
63 

101 
101 
73 
74 
100 

18 
64 

74 
85 
49 
38 

101 
49 
50 
49 
62 

101 
62 
49 

9 
9 
9 

63 
9 
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NOT 37 
OR 38 
OVER 9 
PAD 63 
PICK 9 
QUERY 73 
QUIT 50 
R> "r-from" 84 
Ra "r-fetch" 84 
REPEAT 50 
ROLL 9 
rot "rote" 9 
SAVE-BUFFERS 63 
scr "s-c-r" 62 
SIGN 85 
SPACE 73 
SPACES 73 
STATE 101 
SWAP 9 
THEN 38 
TYPE 73 
u* "u-times" 84 
u. "u-dot" 10 
u/mod "u-divide-mod" 84 
u< "u-less-than" 37 
UNTIL 50 
UPDATE 63 
VARIABLE 18 
VOCABULARY 63 
WHILE 50 
WORD 73 
xor “x-or" 38 
[ "left-bracket" 101 
CCOMPile] "bracket-compile" 10 1 
] "right-bracket" 10! 
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FORTH- 79 
Handy Reference 

Stack notation: (normal stack before —* normal stack after) 

Operand key: n,nl .. 16 bit value 

d,dl .. 32 bit value 

addr .. 16 bit address 

byte .. 16 bit value whose lower 8 bits only are set or used by the 
operation 

char .. 16 bit value whose lower 7 bits only are set or used by the 

operation, representing an ASCII character 

flag .. 16 bit value representing a Boolean flag, a zero value = 'false', 

a non-zero value = 'true' 
u . . the prefix denoting an unsigned number 

Stack Manipulation: 
DUP (n —» n n) Duplicate top of stack 
DROP (n -» ) Lose top of stack 
SWAP (nl n2 —* n2 nl) Reverse top two stack items 
OVER (nl n2 —> nl n2 nl) Duplicate second item on top 
ROT (nl n2 n3 —* n2 n3 nl) Rotate third item to top 
PICK (nl —> n2) Duplicate nlth item on top of stack 
ROLL (n -> ) Rotate nth item to top 
?DUP (n n (n)) Duplicate only if non-zero 
DEPTH ( -» n) Count number of items on stack 
>R (n -> ) Move top item to return stack 
R> ( -» n) Retrieve item from return stack 
R(» ( — n) Copy top of return stack 

Comparison: 
< (nl n2 —> flag) True if nl less than n2 
- (nl n2 —> flag) True if nl equals n2 
> (nl n2 —» flag) True if nl greater than n2 
0< (n -> flag) True if n negative 
0 = (n flag) True if n is zero 
0> (n -► flag) True if n greater than zero 
D< (dl d2 — flag) True if dl less than d2 
U< (uni un2 -* flag) Compare as unsigned integers 
NOT (flag -» -flag) Reverse truth value 



Arithmetic and logical: 
+ (nl n2 —> sum) 

- (nl n2 —> diff) 

* (nl n2 —> prod) 

/ (nl n2 —> quot) 

MOO (nl n2 —> rem) 

/MOD (nl n2 —» rem quot) 

1 + (n —* n+1) 

1- (n -» n-1) 

2 + (n —> n+2) 

2- (n -> n-2) 

D + (dl d2 —> dsum) 

*/ (nl n2 n3 —* quot) 

*/M0D (nl n2 n3 —> rem quot) 

U* (uni un2 —* ud) 

U/MOD (ud un —> urem uquot) 

MAX (nl n2 —> max) 

MIN (nl n2 —> min) 

ABS (n — |n|) 

NEGATE (n -» -n) 

DNEGATE (d -d) 

AND (nl n2 —» and) 

OR (nl n2 —* or) 

XOR (nl n2 —> xor) 

Memory: 

J§ (addr —» n) 
1 (n addr —> ) 

c@ (addr —> byte) 

C! (byte addr —> ) 

? (addr —* ) 

+! (n addr —> ) 

MOVE (addrl addr2 n —* ) 

CMOVE (addrl addr2 n —* ) 

FILL (addr n byte —> ) 

Control Structures: 
DO (end+l start —» ) 

LOOP ( - ) 
+ L00P (n -> ) 

I ( -» n) 
J ( -» n) 
LEAVE ( - ) 
IF (flag -» ) 
ELSE ( - ) 
THEN ( - ) 

BEGIN ( - ) 

UNTIL (flag -> ) 
WHILE (flag -» ) 
REPEAT ( - ) 
EXIT ( - ) 
EXECUTE (addr —*■ ) 

Add 
Subtract (nl-n2) 
Multiply 
Divide (nl/n2), quotient rounded toward zero 
Remainder from (nl/n2), rem has sign of nl 
Divide with remainder and quotient 
Add 1 
Subtract 1 
Add 2 
Subtract 2 
Double precision add 
(nl*n2/n3) with double precision intermediate 
As */ with remainder and quotient 
Multiply with double result, all unsigned 
Divide double number by single, all unsigned) 
Compare nl with n2 and leave the greater 
Compare nl with n2 and leave the lesser 
Absolute value 
Change sign (2's complement) 
Change sign of double number 
Bitwise logical AND 
Bitwise logical OR 
Bitwise logical XOR 

Replace address by number at address 
Store n at address 
Replace address by byte at address 
Store byte at address 
Print the number stored at address 
Add n into the number stored at address 
Move n numbers starting at addrl to addr2 
Move n bytes starting at addrl to addr2 
Fill n bytes of memory starting at addr 

Set up DO .. LOOP or +LOOP given index 
range 
Add one to index, exit loop when index>end 
Add n to index, exit loop when index>end for 
n>0, or when index=end for n<0 
Place current loop index value onto stack 
Place index value for next outer loop onto stack 
Force DO loop termination 
Construction: IF ..true.. THEN 
or IF ..true.. ELSE ..false.. THEN, 
execute true or false words according to flag 
value at IF 
Mark the start of an UNTIL loop or a WHILE 
loop 
In BEGIN .. UNTIL, loop until flag is true 
In BEGIN .. WHILE .. REPEAT construct, 
loop while flag true at WHILE 
Prematurely exit this colon definition 
Execute word whose compilation address is at 
addr 



Character input-output: 
CR ( - ) Print carriage return and line feed 

EMIT (char —> ) Print character 

SPACE ( - ) Print one space 

SPACES (n -> ) Print n spaces 

text" ( - ) Print text delimited by " 

TYPE (addr n —> ) Print the string of n characters at address 

COUNT (addr —* addr+1 n) Fetch count byte n and point to string 

-TRAILING (addr nl —> addr n2) Reduce character count by trailing spaces 

KEY ( char) Read a single character from the keyboard 

EXPECT (addr n —> ) Read n characters (or until return) from 

QUERY ( - ) 

keyboard into memory at address 

Read 80 characters (or until return) from 

WORD (char —»• addr) 

keyboard into input buffer 
Read next word from input stream using char 

Number input-output: 

as delimiter. Leave address of length byte 

BASE ( —» addr) System variable containing current base 

DECIMAL ( - ) Set base to decimal 

(n -» ) Print n with one trailing space 

U. (un -> ) Print unsigned with one trailing space 

CONVERT (dl addrl —» d2 addr2) Convert string at addrl+1 to double number, 

<# ( - ) 

add into dl leaving result d2 
Begin a formatted number conversion 

# (udl —> ud2) Convert next digit of udl and HOLD it 

#S (ud -► 0 0) Convert and HOLD all remaining significant 

HOLD (char —» ) 

digits 
Insert character into formatted string 

SIGN (n ud —* ud) HOLD minus sign only if n is negative 

#> (ud —> addr n) Drop ud and prepare string for TYPE 

Mass storage input-output: 
LIST (n -> ) List block n and set SCR to n 

LOAD (n -* ) Interpret block n, then resume normal input 

SCR ( —» addr) System variable containing listed block 

BLOCK (n —> addr) 

number 
Leave address of block n, reading block off 

UPDATE ( - ) 

storage if necessary 
Mark last block accessed as updated 

BUFFER (n —> addr) Assign a free buffer to block n, leaving its 

SAVE-BUFFERS ( - ) 

address 
Write all updated blocks to storage 

EMPTY-BUFFERS ( -> ) Mark all buffers as empty 

Defining words: 
: <name> < -* ) Begin colon definition of <name> 

/ ( - ) End colon definition 

VARIABLE <name> ( - ) Define variable <name>. 

<name> ( —* addr) returns its address when executed 

CONSTANT <name> ( -» n) Define constant <name> with value n. 

<name> ( -> n) returns its value when executed 

VOCABULARY <name> ( -» ) Define a vocabulary <name>, becomes 

CREATE <name> ( - ) 

CONTEXT vocabulary when executed 
Create an empty dictionary entry <name>, 

<name> ( —> addr) returns parameter field address when 

DOES> ( —> addr) 

executed 
Used in defining new defining-words 



Vocabularies: 
CONTEXT 

CURRENT 

FORTH 

DEFINITIONS 

' <name> 

FIND 

FORGET <name> 

Compiler: 
i 

ALLOT 

IMMEDIATE 

LITERAL 

STATE 

[ 

] 

COMPILE 

[COMPILE] 

Miscellaneous: 
( 
HERE 

PAD 

>IN 

BLK 

ABORT 

QUIT 

79-STANDARD 

Based on material 
Carlos, CA 94070, 

( —» addr) 

( —* addr) 

( - ) 

( - ) 
( —* addr) 

( —» addr) 

( - ) 

Variable pointing to vocabulary, for word 
searches 
Variable pointing to vocabulary for new 
definitions 
Set CONTEXT to the main FORTH vocabulary 
Set CURRENT vocabulary to CONTEXT 
Find address of <name> in dictionary 
Find compilation address of next word in input 
stream 
Forget all definitions back to <name> 

(n -» ) Compile n into the dictionary 
(n -> ) Add n bytes to the parameter field of the most 

recently defined word 

( -» ) Mark most recently defined word as 
immediate 

(n -> ) Compile n as a literal 
( -» addr) System variable is non-zero during 

compilation • 

( —» ) Stop compiling input stream and start 
executing 

( —> ) Stop executing input stream and start 
compiling 

( —> ) Compile the address of the following word 
( -* ) Compile the following word, even if 

immediate 

( - ) 
( —> addr) 

( —> addr) 

( —» addr) 

( —» addr) 

( - ) 

( - ) 

( -> ) 

Begin comment, terminate by ) 
Address of next available dictionary location 
Address of a 64 byte scratchpad area 
Variable containing offset into input buffer 
Variable containing block currently being 
LOADed 
Clear all stacks and return control to keyboard 
As ABORT but leave normal stack intact 
Verify that system conforms to FORTH-79 

iroduced by the FORTH Standards Team, P.O. Box 1105, San 
JSA. 



about this book 
FORTH is a new, unusual and exciting computer language. Originally developed to 
control telescopes, it has since been applied in many diverse fields including the 
animation sequences for ‘Star Wars’. 

FORTH is a compact and fast language: faster than BASIC yet more flexible. It is 
more than just a language: it is a programming language, editor, assembler and disk 
operating system all rolled into one. In short, a complete ‘environment’. This book 
describes the standard dialect of FORTH, together with numerous examples, 
exercises and complete programs. Read it — you'll never use BASIC again! 

Alan Winfield is a lecturer in the Department of Electronic Engineering at the 
University of Hull. He specialises in Computer Languages for engineering and has 
recently written a complete FORTH compiler. 
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